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It is shown that for nonzero temperature, Hubbard's narrow-energy-band model is
neither ferromagnetic nor antiferromagnetic in one and two dimensions.

The Hubbard model' for the description of electron correlation in a narrow energy band has been of

great theoretical interest for the last few years. The model retains only that part of the electron-elec-
tron interactions which arises as a result of the repulsion between two electrons of opposite spins lo-
cated at the same site. In spite of this simplifying assumption, the model remains essentially a many-

body problem and an exact solution cannot be found in the general three-dimensional situations. The
one-dimensional problem with nearest-neighbor electron transfer has been solved exactly by I ieb and

Wu, ' who obtained the ground-state energy, the wave function, and the chemical potential for the sys-
tem. In three dimensions Nagaoka' considered the case of nearest-neighbor hopping and has discussed
the ferromagnetism of various lattices for a nearly half-filled band. Apart from these, not many exact
results are known for the model.

In this work we demonstrate explicitly the impossibility of the existence of spontaneous ferromagnet-
ic or antiferromagnetic ordering for this model in one and in two dimensions at an arbitrary nonzero
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temperature. In showing this we use an inequality due to Bogoliubov, which has been exploited by
Mermin and Wagner' to establish similar results for the Heisenberg model, and also by Hohenberg' to
exclude superfluidity in one and two dimensions.

The Hamiltonian for this model for a system of electrons in a narrow energy band is written as

K=+, z g T(R; —R,)C«C&, +I+, n, ,n;, —2HQ;(n; i —n; &) exp(-iq R;),

where the last term represents the extra energy of the electrons in the presence of a space-dependent
static magnetic field H exp( —iq ~ R;). For notational simplicity we have dropped the Bohr-magneton
factor in the last term T.he sums over i and j in (1) go over all the N (=I-, d =dimensiona. lity) lattice
sites. Because of the Pauli principle, the total number of electrons n ~ 2N.

We define the local spin-density operators S; by the following relations:

Si+=C;) C;), Si ——C;) C;), (2)

These operators obey the usual spin commutation rules. The Fourier transforms of the operators, de-
fined through

S(k) =Q; exp(ik R;)S;, S; =N 'Qyexp( —ik ~ R;)S(k),

satisfy

[S,(k), Sg(k')] =+ S,(k+k'), [S+(k), S (k')] = 2S,(k+k'). (4)

Using the relations (S;,) =S;, one has for their Fourier components [S,(k)]t=S„(—k). Using these op-
erators we can re-express the Hamiltonian (1) as

K=+, , Q, T(R, —R,)C;,tC, ,——,'Ig, S; S;+-,In HQ, S;,—exp( —iq ~ R, )

=Qy Q~egng, —T~I+yS(k) S(—k) + g In HS, (-q),—

where the one-electron energies eg are given by

eg=Qy, T(R;) exp(ik R;), T(R, ) =N 'pyexp(-ik R, )eg,

and nT, = Cy,~ Cy, where the Cp 's are defined by

C,. =Qgexp(-ik ~ R;)Cy„Cy =N ' 'Q; exp(ik R;)C, ,
Without any loss of generality, it can be assumed' that

S, = —,
' g; Q, on, , = —,

' Q„Q,one, ) 0.

We shall now use Bogoliubov's inequality'.

—.'&(A, A')&l&[[H, ~],Il']&I.- ~,TI&[H, A]&l',

where

(A&= Tr(e A)jTre; P= 1/k~T.

We choose A=S (-p —q) and B=S (p)+. Then

(6a)

&[[H,&],Il']& =Z~(e~-; —n)&nX~ —n~~&+ 2H&S.(- q)&.

Now

l([[fl,Xl, Il']&I = ling, T (R, )[i —exp(ip ~ R;)]Qy exp( —ik R;)((ny, —ng, )&+ 2H(S, (- q)&i.

Since T(R, ) =T( R;), we can -see that

gy, . T(R;)[1 —exp(ip ~ R, )] = Q T(R, )[1 —exp(ip ~ R;)]+ Q T(R;)[1 —exp(ip ~ R,.)]
Xi%0 ~i(

=2 Q T(R, )(l —cosp ~ R;)
%;&0

=Qy, T(R,. )(l —cosp ~ R,.),
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where we have chosen the zero of energy at gy ey =0, so that T(0) = 0. Thus, using the triangle inequal-
ity we can write

I &II&,&),Ii'l&l - gg,.
l T(R;)I I (1 —cosp R;) I lpga((m1 —~z1)&I + 21' l &s.(- q)&l

KIT(R, )l
— * 2~+2fr~ls„(-q)l,

where S«(-q) =N '(S,(-q)&. In writing down the last expression, we have used the fact, that l(1 —cosx)l
&x'/2, and have also replaced I(gy(nest —ng~)&I by its extreme upper bound' 2N.

The T(R;)'s are the matrix elements of the one-electron operators between Wannier functions which
fall off fast with distance for the narrow bands considered here and hence Qy,.R IT(R)l is well defined.
De110tlllg tllis by 'Q,

I&II~,~],~']&I-.~k~"2' ls (-q)lf.

Using (10) in (7), we get

(11

On summing both sides of (11) over p, the left-hand side gives (&/2)g;((S;„S; )&. Recalling the defi-
nitions (2), we find that its maximum value is &N'. Thus we have

l, (-q)l -.„,pe"~ls..(-q)l

We now replace the sum over p by an integral. If P, be the distance of the nearest Bragg reflection
plane from the origin in p space, we get in one dimension

(12)

I/a

ls.(-q)l'-;, , I20els.,(-q)II'" t" ' ~,s8
0& 20 IS (13a)

We shRll Ilow go ovel' to tile thermodynamic 111nl't, so tllR't botll 't11e volume (=L iI1 olle dimension) Rlld

the number N are infinitely large but the density I-/N= p = const. This gives

X/2

q
pkgT 2e So. —q

Since for large x, tan 'x&x, we obtain from above in the limit of smallH,

Is,.(- q)l -.","' Ill.
In two dimensions one has

and for small fields this gives

const I
T I~2 linlallI~' (14b)

Both in one and two dimensions, from (13b) and (14b) it follows that IS«(-q)l -0 as H-0. Thus a
clR88 Gf IDagnetlc order1Qg 18 excluded. IQ pa1tlculal, setting q =0, we obtain the resUlt that for QGQ-

zero temperature the Hubbard model is not ferromagnetic. Similarly, if we choose q such that exp(iq
~ R) =1, —1 when R connects sites in the same sublattice and different sublattices, respectively, then
we conclude that is is not antiferromagnetic either. However, it must be added that the above argu-
ment does not rule Gut the possibility of other klQds Gf phase tlRQslt1ons. Fol 1QstRQce, R second-or-
der phase change, where S,- 0 but sS,/sHI „,diverges has not been excluded automatically. Another
important point that we would like to emphasize is that the proof above rules out only the occurrence
of spontaneous magnetic ordering.
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The mean lifetime and g factor of the 2.95-MeV 6+ state of 54Fe were measured to be
7 =1.76+ 0,08 nsec and lgl =1.87+0.08, respectively. These results are in agreement
with the shell-model assignment (f&g2 )v plus a small amount of configuration mixing
which accounts for the quenching of the magnetic moment from the Schmidt limit and the
enhanced E2 rate B(E2;6' 4+) =8.2 Weisskopf units.

Within the framework of the shell model, the

,",Fe„ground state (0') and excited states at
1.409 MeV (2'), 2.540 MeV (4'), and 2.948 MeV
(6') can be described in terms of configurations
of two proton holes in the f,I, shell. The 28 neu-
trons close the f,&, neutron shell. E2 transition
rates between these states are sensitive to im-
purities admixed to the pure (f,~, ')„wave func-
tion such as would be caused by particle-hole
excitations involving the 2s-1d shell, mixtures
of 1f-2p configurations, or collective effects
leading to vibrations and deformations. Cochavi
et al. ' and Nomura et al. ' have measured life-
times of some of the 6' states of the (f,I,") con-
figurations in 'Ca, ' Ti, and "Fe. Their results
are similar to those reported by Hensler et al. '
in the case of "Fe. These authors have inter-
preted their results in terms of shell-model
wave functions and have concluded that at least
"Ti and "Fe exhibit a fairly pure f,~,

"structure
based on the rather inert cores of "Ca and "Ni.

A further test of the purity of the f», ' con-

figuration of the 6' state of "Fe can be obtained
from the measurement of its magnetic moment p,

or of the g factor g= y. /I, I being the total angular
momentum, The shell model, in its simplest
form, predicts that the g factor for a state (j")
should be independent of I and of n, the number of
nucleons in the j shell. In particular, for parti-
cles or holes in the f„,shell, g should be equal
to the Schmidt value, g = 1.65. However, the ex-
perimental g values for the f,&, "ground states
of,",Co„, ,",Mn„, and", ,V„are smaller than the
Schmidt value, 4'

Experimental techniques. Apreliminary —mea-
surement' of the 2.948-MeV (6') state mean life-
time gave an approximate value T = 1.7 nsec. As
the 6' state is so long lived, its magnetic mo-
ment is amenable to measurement by the time-
diff erential perturbed angular -correlation tech-
nique. A 2.28-mg/cm' self-supporting "Fe tar-
get was placed within the pole pieces of a 3 kG
permanent magnet whose field was perpendicular
to the reaction plane. This field is sufficient to
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