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Electronic Density of States of Amorphous Si and Ge
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Becton Centerv, Yale University, New Haven, Connecticut 06520
(Received 21 June 1971)

The density of states of the valence and conduction bands of Si and Ge are discussed
using a simple tight-binding Hamiltonian, It is shown that certain features of the density
of states for the case of the diamond structure are related to the short-range order and
hence should be retained in the amorphous state while others depend on long-range order

and are expected to disappear.

Much recent experimental effort has been de-
voted to the determination of the electronic den-
sity of states of amorphous semiconductors, par-
ticularly Ge 2 and Si,>* and the results so far ob-
tained have excited a good deal of theoretical
speculation on the subject.>” An accurate com-
prehensive theory for the electronic properties
of these solids is still lacking®® and is likely to
remain so for some time. However it has recent-
ly been shown'®!! that the problem is not wholly
intractable if a simple Hamiltonian of the tight-
binding type is used—in particular, it can be
shown that for such a Hamiltonian there is a gap
in the electronic density of states for any struc-
ture with tetrahedral coordination of nearest
neighbors. This dispels some, if not all,’? of the
mystery surrounding the observation'™ of such a
gap in the amorphous state. In this Letter the
same Hamiltonian is used to give a discussion of
the shape of the density of states for crystalline
and amorphous semiconductors which hinges on
a question that has long been of interest in this
area but has hitherto been almost entirely unre-
solved. Which features of the crystalline density
of states ave due to the long-range ovder of the
structure and which ave due only to the short-
range ovder ? Only the latter are expected to be
retained in the amorphous structure since this

has essentially the same short-range order as
the crystal but without the accompanying long-
range order. Our conclusions appear to be con-
sistent with the evidence available at present and
we suggest a measurement which should provide
a critical test of the model.

Our Hamiltonian'®!! acts on a set of basic func-
tions |¢;;) which are the “sp®” hybridized orbit-
als that can be formed at each atomic site. The
subscript ¢ refers to the atom and j to the bond.
Bonding and antibonding states can be formed
with the four nearest nighbors of each atom that
lie at the corners of a tetrahedron. The Hamil-
tonian contains two parameters V, and V,:

H=V, E I¢ij><‘ﬂij’| +V, .Z\{,lq)ij><q)i’jl; (1)
i 5
these are, respectively, the matrix element be-
tween orbitals associated with the same atom
(and different bonds) and the matrix element be-
tween orbitals associated with the same bond
(and different atoms). Such a simple Hamiltonian
cannot be expected to give a very accurate de-
scription of Si and Ge but it does provide quite a
good qualitative description of the valence bands
of these semiconductors in the crystalline state,!%!3
Figure 1 compares the density of states calculat-
ed from this Hamiltonian for the diamond struc-
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FIG. 1. Top, the density of states for Ge with the
diamond structure, as calculated by Herman ef al.
(Ref. 14). Bottom, the density of states as calculated
using the Hamiltonian of Ref. 10 with the diamond struc-
ture (solid line) and the Bethe lattice (dashed line).
The delta function indicated by a vertical line is found
in both structures. Units are states/eV atom.

ture,! using V,=—2.5 eV and V,=-6.75 eV, with
that calculated for crystalline Ge by Herman e¢
al.* (For a similar diagram of a calculated den-
sity of states for Si, see Kane.'®) It will be seen
that the main features of the valence band are
similar in our fairly crude calculation and Her-
man’s much more sophisticated one (see also
Ziman'), the principal discrepancy being the re-
duction of the broad peak at the top of the band to
a single delta function. The delta function cor-
responds to a flat band in kK space. The states
which contribute to this delta function are bond-
ing p states which may be described by localized
wave functions. (Such a wave function may be
constructed on any closed even ring of bonds in
the system by giving the basis functions ampli-
tudes ++— — ++— — +++,) By including overlap
between more distant neighbors, the delta func-
tion in our calculation could be broadened and
agreement with Herman’s calculation would be
improved. The conduction band does not corre-
spond nearly so closely in the two calculations,
since further basis functions would need to be
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introduced to describe this in a tight-binding for-
malism.!*** In particular, our model produces
another delta function at the top of the conduction
band!! which in reality (represented by Herman’s
calculation with sufficient accuracy for our pur-
poses) corresponds to bands that are spread over
a wide range of energy.'»'® While some apology
for the failure of the model to accurately de-
scribe the conduction band in the crystalline state
seems in order, it should be stressed that the
model does give a good description of the valence
band and is the only one for which precise and
rigorous statements can be made for topological-
ly disordered (i.e., amorphous) structures at the
present time.

We assume that the Hamiltonian (1) applies to
amorphous systems where the details of the to-
pology or connectivity of the amorphous structure
enter through the summation in (1). We thereby
neglect the random variation of V, and V, due to
distortions of bond lengths and angles from ideal
values of perfect tetrahedral coordination. While
current structural models!” support such a view-
point as a first approximation, the effect of the
superposition of this quantitative disorder on the
topological disorder which we have studied is
certainly worthy of further attention. The delta
function in the density of states in Fig. 1 remains
even if the structure is disordered—indeed it is
quite independent of the details of the structure
provided that it is everywhere tetrahedrally co-
ordinated.!’ The delta function and hence the
broadened peak which is found in more realistic
calculations are consequences of the skorvi-range
order (by which we mean merely the tetrahedral
coordination of the nearest neighbors) and not the
long-range order; it is not a “Brillouin-zone ef-
fect” related to the translational symmetry of the
crystal. The delta function contains 2 states per
atom for all tetrahedrally coordinated structures
and the existence of even rings is not necessary
although these do provide a useful representation
for the wave function in the diamond lattice.

The other peaks at the bottom of the valence
and conduction bands are indeed Brillouin-zone
effects, as may be neatly demonstrated by an ex-
act calculation®® of the density of states for the
Bethe lattice, also shown in Fig. 1.

The Bethe lattice’®?! is a mathematical network
containing no closed loops and having a constant
coordination number which in this case is 4. It
has the advantage of being mathematically tract-
able, and may be regarded either as a purely ab-
stract lattice having no physical counterpart,?? or
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FIG. 2, Three alternative models for the density of
states of amorphous Si or Ge. Top, the Brust model.
Middle, the Penn-Phillips model. Bottom, the model
presented here. All three sketches are schematic.
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as a convenient first approximation in treating
real amorphous structures.!»'® 2 While the delta
function in the density of states for the diamond
structure remains for the Bethe lattice, the rest
of the density of states is rather featureless as
shown by the dashed line in Fig. 1. The two pro-
nounced peaks in the lower half of the valence
band for the diamond structure are not found
here, which demonstrates that they do not result
from the tetrahedral coordination and we may at-
tribute them to the long-range order of the crys-
tal structure, In other words, the broad peak at
the top of the valence band is due to skort-range
order and should be retained in the amorphous
state while those at the bottom of valence and
conduction bands are related to the long-range
order and are not expected in the amorphous
state,?

Figure 2 presents a sketch of the density of
states expected for amorphous Si and Ge on the
basis of these considerations. We have also
sketched the form of the density of states as sug-
gested by two alternative theoretical models.
Brust® has proposed that the crystalline density
of states, calculated for a dilated crystal and
broadened somewhat, is appropriate for an amor-
phous semiconductor. Our model shows that this
is a highly questionable procedure, for although
it may be reasonable for the lower part of the
valence band in Fig. 1, it is surely incorrect for
those states at the top of the valence band that
result from short-range order.

Penn® has set up a simple isotropic model for
the band structure of an amorphous semiconduc-
tor, in which the density of states diverges loga-
rithmically on either side of the gap and is free-
electron—-like elsewhere. Phillips’ has recently
advocated such a model. Of course the logarith-
mic divergences are assumed to be broadened in-
to two peaks.

The three models represented in Fig. 2 are de-
rived from rather different points of view. The
one presented here may be preferable on the
grounds that it is based on the study of a Hamil-
tonian approximating the true Hamiltonian is a
well-defined way, rather than on an arbitrary
Ansatz. That is not to say, however, that either
of the other two approaches might not give a bet-
ter description of the density of states. All three
models would appear to be qualitatively in accord
with the density-of-states picture suggested by
Donovan and co-workers™? on the basis of photo-
emission and optical-absorption measurements,
although the fact that no evidence was found for
any structure in the conduction band might be re-
garded as somewhat at variance with the Brust
and Penn-Phillips models. All three models en-
tail a.broad peak at the top of the valence band,
in keeping with the conclusions of Donovan and
co-workers.2 Clearly experimental information
concerning the density of states in the lower half
of the valence band would be most useful at this
point. Unfortunately all the photoemission stud-
ies done so far on amorphous semiconductors!™
have not used photons with sufficiently high ener-
gies to probe the lower half of the valence band,
because of a lack of suitable windows. Soft—x-
ray emission spectroscopy, which does not ap-
pear to have been used yet to investigate amor-
phous Si and Ge, should provide a clear and di-
rect indication of the shape of the density of
states over the entire valence band, since it is
remarkably successful in doing so for crystalline
Si.?® Such a measurement is therefore proposed
as a critical test of the model used here.?” It
should not be difficult to discriminate between
the three models illustrated by Fig. 2, since
their implications for the shape of the valence
band are quite distinct.

We would like to thank Dr. J. F. Nagle for sug-
gesting the use of the Bethe lattice in this study,
and Dr. V. Heine for helpful conversations.
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Nonexistence of Magnetic Ordering in the One- and Two-Dimensional Hubbard Model
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It is shown that for nonzero temperature, Hubbard’s narrow-energy-band model is
neither ferromagnetic nor antiferromagnetic in one and two dimensions.

The Hubbard model® for the description of electron correlation in a narrow energy band has been of
great theoretical interest for the last few years. The model retains only that part of the electron-elec-
tron interactions which arises as a result of the repulsion between two electrons of opposite spins lo-
cated at the same site. In spite of this simplifying assumption, the model remains essentially a many-
body problem and an exact solution cannot be found in the general three-dimensional situations. The
one-dimensional problem with nearest-neighbor electron transfer has been solved exactly by Lieb and
Wu,? who obtained the ground-state energy, the wave function, and the chemical potential for the sys-
tem. In three dimensions Nagaoka® considered the case of nearest-neighbor hopping and has discussed
the ferromagnetism of various lattices for a nearly half-filled band. Apart from these, not many exact
results are known for the model.

In this work we demonstrate explicitly the impossibility of the existence of spontaneous ferromagnet-
ic or antiferromagnetic ordering for this model in one and in two dimensions at an arbitrary nonzero

1584



