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Extrapolations of high-field and high-temperature series expansions have been used to
construct numerical approximations to the density of zeros g(0} on the Lee-Yang circle
for the Ising ferromagnets on a two-dimensional square and a three-dimensional dia-
mond lattice. For temperatures above the critical temperature the density is zero for
I&l «o and then varies as (& -&o)", with p = —0.1 and + 0.1 for the square and diamond
lattices, respectively.

Lee and Yang' in 1952 pointed out that the ther-
modynamic properties of an Ising ferromagnet in
the thermodynamic limit, in the presence (or ab-
sence) of a magnetic field H, are determined by
the limiting density of zeros of the partition func-
tion, g(0), on the unit circle z =e' in the complex
z =exp(- 2H/T) plane (with H and T in suitable di-
mensionless units). There have been many stud-
ies of the thermodynamic properties of Ising fer-
romagnets, especially near the critical point, '
but despite the fact that g(6) (as a function of T)
contains all this information, and is of fundamen-
tal significance for the theory of phase transi-
tions, ' very little is known about its actual form.
We present below results of what we believe to

be the first systematic investigation of g(8), based
on extrapolations of high-temperature and high-
field series, for two Ising ferromagnets which
exhibit a phase transition and a critical point:
the square lattice and the diamond lattice, with
nearest-neighbor interactions.

We have obtained quantitative information about
some features of g previously anticipated such as
the existence of a gap lOI&6o(T), centered at (}

= 0, in which g is zero if the temperature exceeds
the critical temperature T, . (Such a gap implies
that the free energy is an analytic function of H
for all real values of H including H = 0, and thus
there is no phase transition as a function of H. '
Such analyticity, and thereby the existence of a
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gap, has been proved' at sufficiently high temper-
atures, and it is plausible to assume that it per-
sists for all T & T, .) However, some properties
of g were quite unexpected. We find strong evi-
dence that for the square lattice g(8) diverges at
0=0~. That is, if we assume

g-(0- 0,)"

near 0~, JL(, is negative. For the three-dimension-
al diamond lattice, p, is positive, but different
from a value previously suggested. ' Also, for
both the square and diamond lattices g does not
appear to be a monotone function of 0 for T & T,
and for the square lattice, g exhibits a sharp de-
crease as 0-&, at temperatures well above T, .

Let M(z) be the magnetization of the Ising fer-
romagnet, equal to 1 at saturation. The high-
field series' provides a power series expansion
for M(z) at z = 0 of which the first fourteen coef-
ficients are known exactly for the square and di-
amond lattices. These coefficients are, as well,
the coefficients of the Fourier cosine series for
the function

u(8) =2&g(0) = lim ReM(re' ), (2)
W ]

the limit of the real part of M as z approaches
the boundary of the unit circle from the inside.

For temperatures somewhat below T, a reason-
ably good approximation to z(8) is obtained by
forming Padd approximants to the high-field ser-
ies for M(z) and using (2). The result for both
square and diamond lattices is qualitatively simi-
lar to that indicated in Fig. 1(a) for the mean-
field model. ' At 0=0, u is just the spontaneous
magnetization, and near this point g(0) is approx-
imately parabolic. With increasing 0 the parabola
rapidly bends over and u continues to rise at a
decreasing rate as 0 approaches 7T.

At T, one expects' M to vary as A" for small
H and hence' ~ should be proportional to 0" for
small 0, where 6 is 15 for the square lattice and

approximately 5 for the three-dimensional lat-
tices. If u(0) is set equal to [sin(0/2)]" times a
polynomial, the polynomial can be adjusted to
give Fourier coefficients in good agreement with
the high-field series. The mean-field density for
T = T, is shown in Fig. 1(b) (5= 3).

For temperatures T )1'„a reliable estimate
for ~(8) depends on knowing the gap angle 0G. The
following technique appears to yield accurate val-
ues of 0~ for T not too close to T, . If we define

r = tanh(H/T) = (1 —z)/(1+z),

then lz I
= 1 is mapped onto the imaginary T axis,

T =iq, and the point z = exp(-i8~) onto r = iq~
= i tan(0G/2). Assuming that

M- (T'r+q, ')~

for T near i@~, then, by (2), u or' g has the form
(1) for 8 & 8~ while for q ( q~,

The divergence of y (assuming p(1) can be used
to locate g~.

In practice it is more convenient to hold 7 = ig
fixed and search for a divergence in y as a func-
tion of T or, equivalently, the variable v =tanh(J/
T), using high-temperature series. '0 Indeed,
this procedure is essentially identical to locating
an ordinary critical point in zero magnetic field
by looking for a divergence of the susceptibility
series. We employed a Neville table" to analyze
the series in v (all known coefficients are posi-
tive) in order to obtain vG(q), the inverse function
to q~(v). The resulting estimates for 0c,(T),
whose reliability increases with increasing tem-
perature T, are shown in Fig. 2. The curves
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FIG. 1. The function u{0) for the mean-field model.
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FIG, 2. The gap angle 0&(T) for the square lattice
{lower curve) and diamond lattice {upper curve).
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were drawn using the formula

sin(0c/2) = (t', ~) f(e) (6)

for GO&0&m, with

g(0) = [sin(0/2) ]'~ —[sin(0s/2) ]'~

and Py a polynomial in 6) —~ containing eight
terms. The rather complicated form for (( in (8)
was adopted in hopes of providing a better fit
near T = T„at the temperatures illustrated in
Fig. 3, P = 0- 0G would probably work equally
well. The constant term in P, was chosen to give
the value of u at 0 = & (known exactly for the
square lattice" and estimated by Pads approxi-
mants for the diamond lattice), and the remain-
ing terms adjusted to minimize the mean square
deviation of the Fourier coefficients from the
exact values. For the square lattice, the best
fit (in the sense just described) occurred if both
even and odd terms were included in P,. This
seems to reflect the presence of a singularity in
the form of a sharp decrease in u at 0 = v for tem-
peratures well above T, . This decrease is quite
evident in Fig. 3. Pade approximants to O'M/dz'

with f(v) a third-order polynomial and 6 = P5 the
usual critical gap index. The form (6) gives ex-
cellent agreement with numerical results and has
the expected variation of 0c(T) near T, ."

The high-temperature series also permits one
to estimate p, , on the plausible assumption that
)( diverges as (ec —v)" ' for fixed rI. The values
obtained from Pade approximants to d(ln}()/dv and

(vG —v)d(ln)()/dv showed some dependence on the
temperature which is probably spurious. We
know that the mean-field model' has p. =-,' at all
temperatures, but our methods of analysis ap-
plied to this model gave a variation in p. similar
to that obtained in the other cases, with the most
rapid apparent variation occurring as T approach-
es T~.

Assuming that p, is constant, we estimate a val-
ue of —0.12+ 0.05 for the square lattice and +0.12
+ 0.05 for the diamond lattice. A linear Ising
chain' has p, = —0.5 while the mean-field model,
with p, =0.5, probably represents the limit of an
infinite number of dimensions. Thus there seems
to be a systematic increase in JL(. with dimension-
ality.

Some specific curves for u(0) are shown in Fig.
3. Those for the square and diamond lattices
were generated by computing the Fourier coef-
ficients of z defined by'

(7)
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(b} the square lattice, (c}the diamond lattice, and
(d) the mean-field model.

also give some evidence for a singularity at 6) = r.
For the diamond lattice equally good fits were
obtained if P, contained both even and odd powers
or only even powers of 0 —r. Our calculations do
not rule out the possibility of singular (nonsmooth)
behavior at 0 = v, but if present it is certainly
less prominent than for the square lattice. For
both lattices there is a region about halfway be-
tween 0s and & where du/d0 is positive. This
seems to be a real effect, though we cannot be
absolutely certain it is not an artificial result of
our approximations.

At temperatures less than twice the critical
temperature, we added to (7) a term

(9)

with P, another polynomial, and P the usual spon-
taneous magnetization critical index (-,' for the
square lattice and approximately ~5 for the dia-
mond lattice). The form (9) was suggested by
some work of Suzuki' and seemed to give good
agreement with the high-field series for tempera-
tures near the critical temperature, where the
"leading" singularity (7) has a much smaller am-
plitude than at high temperatures. Of course, if
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our hypothesis about the constancy of p. is cor-
rect, there must be at least a small contribution
from a term of the form (7) at any temperature
above T„showing that the actual density has a
more complicated structure than Suzuki proposed.

In summary, numerical investigations of the
density of zeros on the Lee- Yang circle for a
two-dimensional and a three-dimensional Ising
model indicate few surprises for T «T„but sug-
gest that above T, the behavior near OG is domi-
nated by a singularity with an exponent p, whose
connection with other "critical" exponents is at
present not clear. Also, g(8) is not a monotone
function of 0 for T substantially greater than T„
unlike the situation in the one-dimensional Ising
and mean-field models. Finally, for the two-di-
mensional lattice there is strong evidence of
some sort of singular behavior at 6}=m for T&T, .
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Magnetic excitations in several single crystals of the systems K(Co, Mn)F& and (Co,
Mn}F& have been studied by neutron inelastic scattering. It is found that two branches of
well-defined magnetic excitations, both of which exhibit propagating character, occur at
certain compositions. The dispersion relation for two branches of propagating excita-
tions cannot be adequately described by current theories, but an extension of Anderson's
criterion for localization in disordered alloys gives approximate agreement with the ob-
served character.

The excitations in randomly disordered systems
may have either localized or nonlocalized charac-
ter. Although Anderson' first investigated the
conditions for localization in 195S, there is still
considerable disagreement' about the detailed be-
havior. The theoretical work has dealt mainly
with electron states; but, in principle, the prob-
lem is the same for a wide class of excitations
and in particular for spin waves, which have the
advantage that they can be studied directly by neu-
tron inelastic scattering. We report here mea-

surements on disordered antiferromagnets that
for the first time show the existence of two branch-
es of propagating excitations in a disordered qua-
sibinary system. Current Green-function theo-
ries for antiferromagnets cannot describe the re-
sults, but the character of the excitations is rea-
sonably well described by a localization criterion
of the Anderson form.

The measurements were carried out by means
of neutron inelastic scattering using a triple-axis
crystal spectrometer controlled so that the wave-
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