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Contribution to the Low-Temperature Specific Heat of Vanadium-Doped Ti,0,
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The low-temperature specific heat of Ti,O; doped with 3.9% V,0; is compared with a
theoretical model of a one-dimensional Fermi-Dirac gas proposed by Labbé and Friedel.
Quantitative agreement is found between the model and the experimental results for a
Fermi temperature of 5.3 K. The system under study furnishes an unusual example of an
electron gas obeying a one-dimensional density-of-states function both for the extreme
degenerate case and in the transition to the classical region.

We have measured the specific heat of two sin-
gle crystals of Ti, O, one pure and one doped
with 3.9% V,0,, between 0.4 and 20 K employing
a heat pulse technique. The accuracy is about
1%, except in the high- and very low-tempera-
ture regions where it is somewhat less. In Fig.
1 is shown the extra specific heat, defined as the
difference between the specific heat of the vana-
dium-doped sample and that of the pure sample,
as a function of temperature. The full curve in
Fig. 1 is calculated from a model proposed by
Labbé and Friedel.! The essential feature of
this model is a one-dimensional density-of-states
function g(€) proportional to € "*/? (¢ is the elec-
tron energy).? From Fig. 1 it is seen that the
calculated result agrees with the experimental
data. The parameters that characterize the ex-
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FIG. 1. The extra specific heat of Ti,O; doped with
3.9% V,05 as a function of temperature. The circles
represent experimental data, and the full curve is cal-
culated for a one-dimensional electron gas with Tg=5.3
K and n=2.1%10%? carriers per mole. For comparison
the specific heat of pure Ti,Os is also displayed as the
dashed line. The insert shows the calculated reduced
specific heat C/nk for both a one- and a three-dimen-
sional gas as a function of reduced temperature T /T¢.
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tra specific heat include the Fermi temperature
Ty and the number of carriers per mole, n.
From these two parameters the density-of-states
effective mass is calculated to be 2.2m,, where
m, is the free-electron mass.

Pure Ti,0, at low temperatures is an insulator,
and only the phonons contribute to the specific
heat C,. Below 15K, C;=31.7 T® unJ/mole K
which corresponds to a Debye temperature 6,
=674 K for fifteen degrees of freedom in the
Ti,0, molecule. For comparison the specific
heat of pure Ti,O, is also displayed in Fig. 1; its
magnitude for 7 s 5 K is small compared to that
of the extra specific heat. Hence any variation
in C; due to the change in the phonon spectrum
when vanadium is incorporated in the lattice will
be negligible in the extra specific heat below 5 K.

The insert in Fig. 1 shows the theoretical re-
duced specific heat C/nk as a function of the re-
duced temperature T /T for a one-dimensional
and a three-dimensional electron gas. A method
developed by Stoner® was employed to derive an
explicit expression for the reduced specific heat
which for the one-dimensional gas can be writ-
ten as

C/nk =1.5F  ,,(n)/F-, ;5(0)

= 0.25F., ,(@F. ;5(m)/dn) 7%, (1)
where the Fermi integral F,(n) is defined by

Fym)=J et/ (1 e ]ax,

and n=u/kT with yu the Fermi energy. 7 is ob-
tained from the reduced temperature through the
relation T/Ty =4/|F.,,,(n)]?. Tabulated values® of
F(n) were used in the evaluation of Eq. (1). The
full curve in Fig. 1 was then obtained by adjusting
the two parameters Ty and n. The best fit to the
experimental data was found for Tx=5.3 K and n
=2.1x10%2 carriers per mole. The agreement
with the experimental observations is very satis-
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factory. Above 6 K this agreement diminishes,
partly because of experimental difficulties and
partly because of the subtracted phonon part
which in this temperature region is increasing
rapidly. However, up to 20 K the deviation be-
tween experimental and calculated values does
not exceed 5%. The vanadium-doped sample was
also measured in magnetic fields of 5 and 9 kOe
but no magnetic contribution to the specific heat
could be seen.

The significant feature of the extra specific
heat is a steep rise up to 77=1.2 K indicating a
very high electron density of states at the Fermi
energy. Thereafter the curve bends over and the
electrons (holes) become nondegenerate. The
specific heat calculated for an isotropic three-
dimensional electron gas with a density-of-states
function g(€) proportional to €!/? could not be fit-
ted to the experimental data. The insert in Fig.
1 shows that the specific heat of a one-dimension-
al gas, c¢,, and that of a three-dimensional gas,
c,, differ in several respects. As a function of
temperature ¢, monotonically increases to its
high-temperature classical limit, while c, first
goes through a very broad maximum (c, .«
=0.58k) and then decreases monotonically to its
classical limit. In the low-temperature expan-
sion of ¢, the two leading terms are of opposite
sign, while for ¢, they are both positive. This
last feature of ¢, is indeed found for 7'<0.8 K in
the experimental data as well as the broad maxi-
mum at about 5 K. The specific heat of a two-
dimensional gas [ g(€) is constant] was also com-
pared with the experimental data. However, this
case showed strong qualitative resemblance with
¢, and was ruled out.

Below room temperature pure Ti,O, is an in-
trinsic semiconductor but the addition of V,0, in
concentrations of 1-5% renders the material
metallic.’*® Vanadium-doped samples are p-type
conductors and this has been explained on the
basis of the indirect role of vanadium in intro-
ducing holes in the otherwise filled valence band
of the host material.® The crystal structure of
Ti,0, is that of corundum with the Ti%* cations
located on the ¢ axis. In a band model for Ti,O,
due to Goodenough et? al.,® the bands formed by

the d orbitals directed between nearest-neighbor
cations along the ¢ axis are split and the band
lowest in energy is identified as the intrinsic val-
ence band (or the conduction band for the hole
carriers when vanadium is added). In the Labbé-
Friedel picture each linear chain of transition
metal ions is treated independently leading to a
one-dimensional density-of-states distribution
for the band defined above. The density-of-states
effective mass m * for the carriers in this band
can be calculated from

m*=3dn*h?/32kT ¢ V2,

where V is the molar volume of Ti,O, and 4 is
the distance between two adjacent chains. With
d=2.98 A," we found m *=2.2m,. It should be em-
phasized that the above expression for the effec-
tive mass is quite different from that of a three-
dimensional gas.

A full discussion of this work is planned to be
published later when current investigation of
Ti,0, doped with different concentrations of vana-
dium is completed.
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work.
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