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~Ionization energies of acceptors C, Mg, Zn, and Cd,

in GaP estimated from donor-acceptor pair spectra
are 48, 53.5, 64, and 96.5 MeV, respectively. See,
for example, P. J. Dean, E. G. Schonherr, and R. B.
Zetterstrom, J. Appl. Phys. 41, 3471 (1970).

R. A. Faulkner, Phys. Rev. 175, 991 (1968).
5D. G. Thomas, M. Gershenzon, and F. A. Trumbore,

Phys. Bev. 133, A269 (1964). We note that the energy
interaction term for donar-acceptor pair spectra is
quite different from Eq. (1). Here, the transition ener-
gy decreases with decreasing pair separation, and the
scale of the energy shift is much smaller.

6The number of pair shells within an undulation pe-
riod is large for the relevant ranges of R, and in-
creases rapidly with R. For example, there are eigh-
teen shells over a distance a centered on R= 25 A,
which contribute to luminescence over an energy range
of the order of only 1 meV.
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A model for magnetic impurities in metals is introduced and solved exactly. It treats
longitudinal impurity-electron coupling in the long-time approximation of the x-ray
threshold problem and treats transverse spin-density operators in a fermion representa-
tion. For antiferromagnetic coupling, the magnetization in field 8 vanishes as H ~~~ and
saturates when H is of order p& /Jll)' ~ll (jll and J& are longitudinal and transverse ex-
change constants). For ferromagnetic coupling, the free moment is only slightly renor-
malized.

Interest in the possibility of an exact solution
of the Kondo problem has greatly increased since
Anderson, Yuval, and Hamann' reformulated it
using results from the x-ray threshold problem. '
With their method, it is possible to treat the lon-
gitudinal exchange exactly and study the pertur-
bation series in the transverse exchange. The
result is a formal expression for the partition
function, which must then be evaluated.

Subsequently, it was pointed out that the Tomo-
naga model of the electron gas gave the same for-
mal expression for the partition function. ' This
model treats the longitudinal density operators
of the unperturbed electron gas as bosons, and
had previously been shown to give the weak-cou-
pling limit of the x-ray threshold problem cor-
rectly. 4 On the other hand, as mentioned above,
it is possible to diagonalize the longitudinal ex-
change term of the Kondo Hamiltonian and then
to study the transverse spin-density operators in
this new representation. %'e wish to point out
here that there is a physically plausible model of
these operators which makes the Hamiltonian ex-

~

actly solvable.
Two separate reasons suggest the importance

of this approach. The long-time approximation,
as applied to the Kondo model, ' is based on the
intuitive idea that observable quantities should
be governed by excitations near the Fermi level.
These excitations lead to infrared singularities;
and, within the framework of our model, we can
study their importance and resolve whether they
alone determine the observables. Alternatively,
one can regard this approach as a particular par-
tial summation of perturbation theory for the
Kondo Hamiltonian, which is an exact solution of
our model Hamiltonian. As discussed below, the
two perturbation series have similar Kondo sin-
gularities, and in our exact solution we can study
their renormalization.

The content of our model is best understood by
comparison with the Kondo model. Consider the
formal derivation of perturbation theory in the
transverse exchange constant, using the eigen-
states of the longitudinal exchange as the unper-
turbed basis set. The Kondo Hamiltonian is

+K=Z&gaf ay+ p, &, +2H&, +—(p~&-+p-&+),
fl

where p,.=P» ap, ap, s ~,. is the ith component of the conduction-electron spin-density operator at
the impurity site, o,. and s,. are spin- a operators, and N is the number of electrons. Taking Q, l = N,
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(2)Xu=g»E»c» c»+2Ho', +(J~/N)(p~+v +p„o+),
where pu, = Ã' 'Q»u»c» d and p„= (p„,) are the transverse spin operators at the impurity site, the
c and d operators describe fermions, and the functions E» and u» are specified below. Choosing Q»u»
=N insures that the operator p„,/N defined here obey spin algebra. The perturbation series for the
partition function Z „=trexp(-PXv) in J~ is given by

ao J 2'
f dt, f dt2„((p„,(t,)p„(t,) ~ p„(t,„)),exprl3X —20(t, —t,) ~ ~ ]+(+—-)),

0 m=0
(3)

the operators p;/N satisfy spin-operator algebra. We have omitted the coupling of the external field
to the electrons since it is a negligible correction. ' The first three terms on the right of Eq. (1) can
be diagonalized by a unitary transformation exp(So, ). The transverse spin operator in this new repre-
sentation, p, =exp(So, )p, exp(-So, ) and a, =exp(So, )o, exp(-So, ), still, of course, obey spin commu-
tation relations. Our model replaces these operators by a fermion representation which preserves
this spin algebra and the p, pair-correlation functions.

The model Hamiltonian is

where averages are taken in Q, E»c» c„p„,(t)
is temperature evolved with Q»E»c„c„Z, is
the partition function with J~ =8 =0, and the
trace over the spin variable 0, has been carried
out. A very similar result obtains for the Kondo-
model partition function, Z K

= tr exp(- PX K), as
a perturbation series in J~. However, by Wick's
theorem, it is seen that the averages which ap-
pear in Eq. (3) factorize into all possible contrac-
tions of the c, operators since the trace over the
d operators is trivial. As a result of this factor-
ization, only the spin pair-correlation functions
(p„,(t)p„), and (p„(t)pu, ), occur in Eq. (3).
The quantities E, and u, are then determined such
that these pair-correlation functions are identi-
cal to the corresponding Kondo-model pair- cor-
relation functions. This determination can best
be done by comparing second-order perturba-
tion theory in J~, from Eq. (3), with the corre-
sponding expression' for XK. The result is that
(p„(t)p~ )0 and (p„(t)p„,)0 must both be equal

to the square of the origin-to-origin Green's
function of the x-ray threshold problem. ' This
is achieved by choosing Q~E»c» c, to describe a
symmetric half-filled band of states and Q»u»'
x(c» c»), exp(-E»t) to give the correct t depen-
dence.

Although X~ should properly be viewed as a
new model for the magnetic-impurity problem,
it is closely related to the Kondo model. Consid-
ered as a partial summation for X,K, it first dif-
fers from the Kondo model in order J&.' It also
reproduces the Toulouse limit' exactly, and
agrees with perturbation expansions which can
be derived for very large J~! using the spin-boson
representation' of XK. Furthermore, it has the
same symmetry properties as the general aniso-
tropic KK.

In order to solve for the partition function Z~
we establish that it is formally identical to the
partition function for a solvable single-particle
problem. This problem is described by

XF =P,E» c»tc»+ H(2d td —1)+(Ji/N)(cd t+ dc t),

where c =+»u»c„ the operators c, and d are fer-
mion operators as before, and u, and E„are the
same as in Eq. (2). The perturbation series for
ZF = tr exp(-13XF) is identical to that given by Eq.
(3), with the c(t) operators replacing the pu(t) op-
erators. The H dependences, which were pro-
duced by the o operators in Eq. (3), are here
produced by the d operators. In both cases, the
resulting averages of products of c, operators
factorize, by Wick's theorem, in exactly the
same way. Thus the two partition functions Z„
and ZF are identical.

Since XF is a one-particle Hamiltonian, the sin-
gle-particle Green's function ((d;d )) may be

! evaluated exactly. The correlation function (d ~d)
is then obtained by integration over the frequency
and this gives the magnetization M =1 —2(dtd).
In the usual way, the free energy E may be ob-
tained by integrating the expectation value of the
interaction energy with respect to the coupling
constant. The result may be expressed in terms
of the self-energy Z(~+i0) =Z'(&u)+iZ "(&u) for
((d;d )) as

F F —— tan '
5)

lT - e +1 (d —Z'((d) + 2H

where F0 is the free energy when J~=O. Solving
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the equations of motion gives

Z(~) = —.e'"' ', ([c(t), ct)j,
0

QO 2

—. e' ' ', ((p„,(t), p„j)„
0 Z

(6)

where t is real, (a, bj denotes the anticommuta-
tor of a and 6, and the second equation follows
from the condition that the pair-correlation func-
tions, which occur in the partition functions ZK,
Z„, and ZF, are set equal. It is thus not neces-
sary explicitly to determine the u, . We shall
consider only zero temperature in detail. Since
(p„+(t)p„), is the square of the origin-origin
Green's function, it takes the form (p„,(t)p„),
=( p, /it)' ', determined by Nozieres and de Do-

t

minicis' for the x-ray threshold problem. Here

p, is the Fermi-surface density of states; e is
related to the phase shift for scattering from the
Kondo longitudinal exchange term' for large J~(p„
and is equal to 2JI~p, for small JI~p, . This time
dependence is correct provided t & to is a cutoff
of order a reciprocal band width. In usual met-
als, t, =p„but it is important here to keep the
two different to distinguish the long-time, or in-
frared, regime from the ultraviolet regime. An
answer independent of to indicates that infrared
singularities do indeed dominate, and that the de-
tails of the band structure are unimportant.
Thus we take

1 p
2 (pu+ (t)pii -)0 to+st

corresponding to a single-electron density of
states p(E) =p, e 'o. Substituting this into Eq.
(6) gives the following result for &ut, «1:

Z(&u+i0) =J 'p, ' 'I' '(2 —e)(-vi~~~' ' —&u~&u~ 'v cto(-, ii)e+2cuI'(I +)et,' co(s-,
'

v)ee'j, (7)

where I' is the gamma function. It is seen that the limit t, -0 is meaningful only for e &0, correspond-
ing to antiferromagnetic coupling. Furthermore, for c &0 this self-energy dominates the ++2H terms
in the argument of the inverse tangent in Eq. (5) at small ~, while for e &0 the corrections due to Z(~)
are negligible at small ~. The thermodynamics for ferromagnetic coupling thus depends on the de-
tails of the band structure. We treat these two cases separately below.

Antiferromagnetic couPling. —The ground-state energy for H =0 is found by substituting Eq. (7) into
Eq. (5). In Z(v), the limit to-0 can be taken, but the frequency integral must be cut off at t, in gen-
eral since Eq. (7) is only valid for ~t, «1. The result can be written as

'o 'd(u
~8~v ( I"(2 —e) +J 'p' 'v~ ' cotyr e

The upper cutoff can be extended to infinity if e &1, resulting in a ground-state energy which is pro-
portional to po '(Zipo)'" times a simple integral which depends only on e. The importance of this re-
sult is the nonanalytic dependence on J~, resulting from divergences in perturbation theory. If the in-
verse tangent in Eq. (8) is expanded in Z~', infrared divergences are encountered in nth order when
ne &1. For small e, these divergences occur first at very high orders, but they sum to produce the
nonanalytic dependence of E on J~.

The upper cutoff in Eq. (8) must be retained for e & 1, and the ground-state energy becomes depen-
dent on to. Numerically, however, perturbation theory in J~ is adequate to compute F, because the
divergences sum to produce a (J~o)'" contribution which is negligible compared to the second-order
result of —J~'p 'to' ' for sufficiently small g.

The magnetization is given by differentiating Eq. (5) with respect to H, then setting t, =0. The re-
sult is

2 2H ~ ~]~ 7r e1 -M =— dx x+—x' '"+cot—+1 (9)

where &u, = p, '[J 'p, 'v/I'(2 —e)]'~' and the variable x =(&u/&u, )' has been introduced. With H =0, the
result M=0 is readily found. It is also evident from Eq. (9) that the susceptibility (SM/SH)s-, is di-
vergent when e & —,. This divergent susceptibility results from a power-law magnetization which be-
haves as M=&(2H/~, )'v/2 for small e and H. From these results, we can also deduce the character-
istic saturation field 2H, to be roughly p„'(Ji'p, 'ii/e)'i', which corresponds to the typical fluctuation
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energy described by the self-energy in Eq. (7).
Ferromagnetic couPling. —Equation (8) can also

be used for e &0, provided the additional assump-
tion J.2p02-~ toe«e ls made. This restrlctlon in-
cludes the physically interesting isotropic Kondo

problem, and serves to simplify the results.
Otherwise the computations are quite complicat-
ed, but qualitatively unchanged. Qbviously Eq.
(8) has only ultraviolet singularities if expanded
in J~'. Since the band width to

' cuts them off,
the perturbation series converges rapidly and,
for numerical purposes, the second-order re-
sult of —J~'po' 'to' ' suffices. Qbviously this re-
sult depends on the details of the band str lcture,
but the conclusion that the series convert, s does
not.

An examination of Z(w) in Eq. (7) for a &0 in-
dicates that Z'(u&) is negligible compared to 2H

when inserted in Eq. (5). Consequently, the free-
spin nature of the ((d;dt)) . Green's function is
only slightly renormalized, and the ~+2H behav-
ior is dominant in Eq. (5). Differentiating Eq.
(5) with respect to H gives a result for the mag-
netization which can be evaluated by perturbation
theory to be

J 2p2+ I~(~t - t~l

I.IF(2- )

As in E, the magnetization depends on the band
structure, but we can conclude that, unlike e&0,
there is no problem of infrared singularities in
the perturbation series for M.

The finite-temperature field dependence is
qualitatively similar to that obtained for the
ground state. For k&T» H„ the antiferromagnet-
ic susceptibility follows a Curie law, and for kBT
«H, it approaches the T =0 susceptibility which
is nonlinear in general. The ferromagnetic ease,
of course, is simply a free spin with only weak
temperature-dependent renormalizations.

It is interesting that this model and the Kondo
Hamiltonian have the same magnetization at H =0
but the susceptibilities' differ for e +0. A more
complete comparison with these results will be

made in a future publication. However, it may
be noted that, for the case of isotropie exchange,
J = Jtt= J, both are also identical to order J' for
the resistivity and the susceptibility. In particu-
lar the usual Jp, 1n(Hp, ) singularities are found,
and they are summed exactly in our model to give
the results of Eqs. (9) and (10). For J&0 the dis-
cussion following Eq. (9) demonstrated that the
characteristic field p, 'exp[- (2Jp, ) '] deduced
from this series is renormalized downward to

p, '(Jp, )"~, while for J &0 essentially free-spin
behavior was found.

The model may also be used to test the validity
of the renormalization-group method. ' This
problem together with several interesting ques-
tions concerning impurity-spin dynamics and re-
sistivity is currently being studied.
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