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The bound electron states associated ~ith higher-valence impurities in alkali-metal
solvents are calculated by using Hartree-Fock-Slater methods and a dielectric approxi-
mation to the electron-gas response. The core diamagnetism and the conduction-elec-
tron magnetism together provide a quantitative account of the observed giant diamagne-
tism.

In recent years, R considerable amount of work
hRs beeD devoted to the lnvestlgRtlon of magnetic
impurities in metals. Previous calculations of
the magnetism of nontransitional impurities in
metals' have failed to reproduce even the ob-
served sign of the susceptibility, mainly because
the impurity structure was not. known. Very re-
cently, the giant. diamagnetism' and the anoma-
lously small spin-flip scattering cross section~
of higher-valence impurities in alkali-metal sol-
vents hRve been Rscl lbed by Rigel t RDd Flynn
to a novel impur ity structure. These impurities
were assumed to have complete outer valence
p shells of six electrons bound in localized or-
bit:Rls below the band bottom; for example, I en-
ters solution as I with a 5s'5p"S, configuration.
The closed-shell ions are neutralized by a, re-
pulsion of band states which creates a hole in
the electron gas near the ions, thereby greatly
reducing spin-flip scattering through spin-orbit
coupling in the impurity core.

In this Letter, we present a calculation of.the
structures and magnetic susceptibilities of cer-
tain impurities in metals. Our calculations con-
firm that higher-valence impurities adopt the
hypothesized structure' and predict impurity sus-
ceptibilities in quantitative agreement with the
observed giant diamagnetism.

To calculate the impurity structure, we pro-
ceed in the following manner: Let us denote by
V,(r) the potential due to the impurity ion, in-
cluding all bound orbitals, and by V~ the poten-
tial of the solvent ion; also, we denote by V~(r)
the potential due to the electron gas in the sig-
ner-Seitz cell. %hen the impurity atom is in-
troduced to replace the solvent ion, the perturba-
tion potential is

V„„(r)= Vi(r) —Ve(r).

The conduction-electron-gas response to this
perturbation, in the linear response approxima-

~n, is to create a potential V, (r) with Fourier

components

V,(h) = V„„(h)[lj~(u)-i], (2)

in which e(k) is the dielectric function of the host
metal. The impurity electrons therefore experi-
ence an external potential

V,„,(r) = V,(r) + V, (r).

In the present calculation, we have employed
the random-phase approximation for the dielec-
tric function and have approximated the potential
V~(r) by that of a charge e spread uniformly
through the signer-Seitz sphere. The potential
V,„,(r) resembles the Madelung well in ionic
crystals and acts to localize the impurity levels.
Using the Slater approximation4 to the exchange
potential, we have computed the electron states
of various impurities in alkali-metal host ma-
terials. The V,„,(r) calculated from Eqs. (1)-(3)
was introduced as an external potential into a
modified version of the Herman-Skillman pro-
gram, ' and the core and conduction-electron dis-
tribution were iterated to self-eonsisteney. In
practice, since the linear-response approxima-
tion is poor for strong potentials, we have in-
variably used for the solvent potential V~(r) that
of an alkali ion having the same core structure
as the impurity (e.g. , Rb as the host for Se, etc. ).
Differences among various alkali-metal solvents
then enter entirely from the different electron
densities and hence from hF in e(k). This pro-
cedure is obviously correct when differences
among the alkali-metal pseudopotentials are
negllglbl. More generRlly, the approximate
treatment is satisfactory because the ions are
negatively charged. For this reason electrons
rRrely experience the potentlRI ln the impurity
core. Figure 1 shows the binding energy with
respect to the band bottom for the 5s and 5p lev-
els of the 5s'5p''S, configuration of Xe, I, Te,
Sb, and Sn impurities in K. It is apparent that
the orbitals are strongly bound by several elec-
tron volts in the first four cases, An erroneous-
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TABLE I. Columns 1-3 give various contributions to
the theoretical partial molar impurity susceptibilities
r&'" listed in column 4 {see text for details). The final
column gives observed values X»

"P of the susceptibility.
All values are given in units of 10 ~ cm3/mole.
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Te
Sb
Bl

Se
Te
Sb
Bi

—69
-92

—103

-51
—69
-95

—105

Impurities in Na
—65 26 —108
—93 28 —157
-93 28 —168

Impurities in K
—93 37 —107
—93 37 —125

—133 40 —188
—133 40 —198

—108 +14
-148 +15
—136 +14

—123 +15
—112 +30
—154 ~13
—202 +20
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I
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Impurity in K

FIG. 1. The solid circles are the calculated binding

energies (in rydbergs) for the bound 5s and 5P states of
various impurities in K. In each case the energy is
calculated for the configuration 5s 5p Sp.

ly large V&„ int;roduced by a major difference
between the solvent and solute core structures
can perturb the energy levels by -0.1Ry.

The impurity susceptibility is calculated in

two parts associated with the bound impurity or-
bitals and with the conduction electrons, respec-
tively. The first part is easily evaluated using
the expression'

X, = - 0.79 1 987 x 10 '(g,.r,.') cm'/mole, (4)

q, (Z) = ,'~(Z/Z, )"-',-q, (F) = -~&(Z/E, ) &~2

(n ~ 0) (6)

for r,. in atomic units, in which the sum is over
all bound impurity orbitals, The second contri-
bution, of comparable importance, arises from
the perturbed conduction band in a way that has
been discussed by Kohn and Luming. ' The eval-
uation of this term requires the conduction-elec-
tron scattering phase shifts as functions of the

energy throughout the band. Unfortunately, these
quantities can be derived from first principles
only through calculations which present formid-
able computational difficulties. However, in the

case of small impurity screening charges, it
should be sufficient to replace the actual phase
shifts be their asymptotic form for small E. For
an x" ion, the model phase shifts

satisfy this criterion and also the Friedel sum

rule; they also preserve the correct totals of s-
and P-like orbitals in the neighborhood of the im-
purity.

With these phase shifts the impurity spin mag-
netism (i.e. the change in spin susceptibility
when a solvent atom is replaced by an impurity)
takes the form

y~
= Q(2l +1) d@' =-(n+3)X, ,

2p, B

l QF

in which y, =3 p, sm/2EF is the solvent spin para-
magnetism. It appears that exchange enhance-
ment in the pure alkali metals is very insensi-
tive to the electron density. ' Furthermore, the
reduced spin-flip scattering' cross section of
higher -valence impurities demonstrates that
even electrons near kF rarely enter the impurity
cores; therefore the solute core potential can
have no strong influence on enhancement. It ap-
pears reasonable, then, that the observed en-
hanced X, should be used in Eq. (6). While de-
rived for impurity atoms, Eq. (6) also gives a
good estimate for large voids of n + 1 missing
solvent ions for which Xp

= —(n+ 1))L, . We there-
fore believe that it provides a reliable estimate
of the impurity spin paramagnetism.

There remains a small correction X, for orbit-
al magnetism. Kohn and Luming' show that y,
= (n+ l)gz/3, with y„ the solvent Landau diamag-
netism, for weak general perturbations, It is
easily shown that this value holds also for strong
highly localized perturbations (e.g. , a small
strongly repulsive barrier), and this correction
(~ 10%) to the large spin contribution will be used
here. In Table I, we collect the susceptibility
contributions for the various impurities in Na
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and K for which experimental data are available. '
Column 1 gives the calculated core diamagnetism,
column 2 the spin magnetism using values of X,
from Ref. 7, and in column 3 are tabulated val-
ues X„of the diamagnetic correction y, plus the
solvent band susceptibility required to change
the theoretical results into the required partial
molar impurity susceptibilities X,. The latter
correction is needed because phase-shift argu-
ments give the susceptibility change when a sol-
vent ion is pep/aced by an impurity, whereas
the experimental quantities give the change when
unit quantity of impurity is added to the solvent.
The sum of columns 1-3, y ", is given in col-
umn 4. These theoretical values are in very
good agreement with the observed susceptibilities
g, "P given in column 5; they constitute the first
successful calculations of nontransitional impur-
ity magnetism in metals, and confirm the pro-
posed model of impurity str ucture. Calculations
for the altex'native structux'e, ' in which the im-
purity valence states resonate with the host (Cu)
conduction band, yield susceptibilities which are
an order of magnitude smaller and have the wrong
sign.

The present methods break down for very shal-
low levels. Indeed, the shaxp distinction between
localized and propagating states in metals dis-
RppeRI's Rs dynamical corlelRtlons blu' the bound
orbitals into the band bottom with decreasing im-
purity binding. The agreement between theory
and experiment for Sb in Na and K and for Bi
in K seems to tie down these effects as important
only for binding energies ~ 0.1 Ry; deeper levels
are probably given rather accurately by our
static dielectric approximation.

The transition from bound to band states can-
not be predicted by means of a time-averaged
potential Vz(r). Nevertheless, the sequence of
5p levels shown in Fig. l does point accurately
(broken line) to the observed'0 transition of Sn

orbitals at about the conduction-band density of
K. Experimental details of the Sn and Bi transi-
tions will be reported in due course.

Finally we note that excited impurity configura-
tions may also be bound. In rare-gas and ionic
crystals, np'- np'(n+ l)s' transitions of closed-
shell ions possess a characteristic doublet struc-
tuxe" due to spin-orbit splitting of the core-hole
levels. Attempts to observe these excitations
and to predict their energies are at present in
progress in our laboratories,

%e wish to thaQk J. A. Rlgert RQd M. D. Mlko-
losko for helpful discussions and for making the
experimental data quoted above available priox
to publication.
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