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are only slightly perturbed [inequality (4)j. Some
particles mill always be trapped in the potential
well of the wave and will oscillate back and forth
with a period' t „,z = 2s (rn/ekE, )' '. Our analysis
wQI be correct if the wave damps appreciably
in a time lees than t„,p, i.e., if yt„,&~ 1. If
we neglect the P terms in Eq. (11), we find yt„,~
=4s'(o.'/&, )(m/m~)"' times the ordinate values of
Fig. l; and the criterion is not satisfied if o./
B,= 1. But, as discussed by Stix, ' randomiza-
tion of the particle trajectories by "collisions"
with other waves in a broad spectrum of waves
may effectively extend the time over which our
calculation i.s valid.

We conclude by mentioning a few cases where
nonlinear Landau damping of Alfven waves may
be important. Large-amplitude Alfven waves
have been observed" " in the solar wind, and
damping of these waves in the manner described
could represent an important energy source to
the solar wind. " Similarly, Alfvd'n waves origin-
ating at the surfaces of stars which have hydrogen
convection zones might play a significant role in
driving stellar winds and producing stellar mass
loss, Finally, Alfven waves almost certainly
exist in supernova remnants and in the galaxy,
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A complete set of time-dependent Ginzburg-Landau equations are solved to find the
current, charge, and field distributions when the vortices in a superconductor are forced
into motion by a transport current. We find that in general the local electric field is not
proportional to the local magnetic field and backQow is an essential feature.

A new consistent quantitative description of the motion of vortices in a superconductor as forced by
a transport current i.s obtained which incor'porates backflow as an essential feature. Previous solu-
tions of time-dependent equations found simply a rigid translation of the vortices perpendicular to a
uniform transport current. ' ' 'this previous work did not generally include simultaneously all the nec-
essary constraints including conservation of charge and the Coulomb force. By considering a complete
set of equations we have found a complete solution including the local field and charge and current dis-
tributions near the upper critical field H„. We show that in general a simple low-velocity Lorentz-
transformation-type relation between the local electric and magnetic fields and the translational veloc-
ity v of the vortices, E(r) = —v &8(r), is not possible, although such a relation is true for the spatially
averaged fields, (E) = —v x(B).

The simplest complete set of time-dependent equations for a superconductor has been derived from



VOLUME 27, NUMBER 20 PHYSICAL REVIEW LETTERS 15 NOVEMBER 1971

microscopic theory by Gor'kov and Eliashberg' for a gapless superconducting alloy containing a high
concentration of paramagnetic impurities'.

y(B/Bt+i2eg) b, + ( '(
I n. I' —1)b, +(V/i —2eA)'b, = 0,

j = o(- Vy —BA/Bt)+Re[t *(V/i2e —A)a](4»') ',

p =(o v'-)/4»TF'

(1)

(2)

(3)

Here y is the inverse of the diffusion constant. g may be identified as the electrochemical potential di-
vided by the electronic charge e. 4 is the order parameter reduced by its equilibrium value in the ab-
sence of fields. $ and A. are the temperature-dependent coherence length and penetration depth, re-
spectively. v is the normal-state conductivity, and A. TF is the Thomas-Fermi screening length. The
relation between these parameters and microscopic ones may be obtained by comparing our expres-
sions with those of Ref. 4 (we have set K=c =1). Adding the Maxwell equations coupling the scalar and
vector potentials y and A to the charge and current densities p and j, a complete set of equations is
obtained.

The static solution near H„has been obtained by Abrikosov taking the z direction parallel to the
magnetic field and choosing the gauge where the vector potential is entirely in the y direction:

6 =Q„C„exp[-eB,(x —kn/2eB, )'+ ikny ],

A, =B,x —f 51&I'dx/4ez'-=A, + M,

8. =8.—& I
~

I
'/4e~' -=8. + &B.

(4)

(5)

(8)

The notation 5 I 6 P means the local deviation from the average, 5 I 6 P =
I b, I' —(I 6 I2). The constant 8,

=(8) appears in Eq. (4) so that there is exactly one flux quantum contained in each lattice cell. For
the simple experimental arrangement of a planar sample very thin compared with its lateral dimen-
sions, which is oriented perpendicular to the magnetic field, the demagnetization coefficient is unity,
and B, equals the externally applied field.

The moving solution is obtained as a perturbation of this static solution. First we note that A. TF is of
the order of the Fermi wavelength (a few angstroms) and is much shorter than $ and A.. From V E
= 4&p and Eq. (3) it follows that g = p except for corrections O(A. TP/$') or O(A, T„'/A. ') and that the two

- may usually be used interchangeably, leaving p to be calculated from V' ~ E.
The Schmid-Caroli-Maki" solution was obtained by assuming that there is a uniform electric field

E, in the x direction obtained from a scalar potential y = —E~. Equation (1) was solved to find the
moving order parameter b, , and Eq. (2) was used to obtain the current, which was then averaged. The
coefficient relating (j) to E, was identified as the new conductivity. We find that this procedure does
give the correct answer for the average dissipation rate. However, the divergence of their expression
for j is not zero, and charges must be accumulating to generate a nonuniform E until a steady state is
achieved. We will now derive this steady-state solution.

The equation which determines g is obtained from the equation of continuity, V j + Bp/Bt = 0, and the
imaginary part of Eq. (1) multiplied by b, *:

ylm[A*Bb/Bt i2e+g~ b, I']+V Re[AÃ( Vi/—2eA)b, ]=0. (7)

The second term is of the same form as the divergence of the second contribution to j in Eq. (2). Con-
sequently we arrive at a result, which [noting Eq. (3)] is equivalent to Gor'kov and Eliashberg's' Eq.
(17),

a[V'y+B(V A)/Bt] =y[lm(a*Be/Bt)(2e) '+q~ a~'](4»') '+Bp/Bt.

This equation introduces a new characteristic screening length f for electric fields into the problem,
&'=-4»'v/y. For a superconductor with a high concentration of paramagnetic impurities, &'= g'/12.
Already one can anticipate that the only possibility for E(r) to be proportional to B(r) is if the two
screening lengths are equal, r =A..

Near H„we solve Eq. (8) only to first order in n and I & I'. Unlike Schmid' and Caroli and Maki' we
do not assume that E and v are in any particular direction relative to the vortex lattice in order to see
if there is an anisotropy. The Bp/Bt term is discarded, as it must be of order v, since p vanishes
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(canceled by the lattice charge) in equilibrium. ' SA/St is found from the static solution by assuming a
uniform translation, &A/&t = —(v. V)A. The first term on the right-hand side of Eq. (8) is similarly ob-
tained from the static solution Eq. (4). Using the fact that the lowering operator of a harmonic oscil-
lator annihilates the Abrikosov solution, [8/ax+i{&/By —i2eB,x)]6= 0, we can rewrite this term as
—v Im(b. VA) =A. 'V (vxB) —v A, I b )'. Substituting these expressions into Eq. (8) and using a vector
identity, we obtain

g'V'(y —v A) =(g'- g')V (vxB)+(y —v A ) ~
~~'

Ill terms of the Gl'cell 8 funct1on of tile two-dxmenslonal Laplacla11 operatlonq (2w) ill ll' —1'
lq we call

solve Eq. (9) to first order in I 6]':

g = v A + (A /g2 —1)J ln
~
r —r '

) (V' [v xB(r ') ]]d'y'/2n. (10)

Remembering the smallness of A. TF, the electric field may be calculated from E= —Vg+(v V)A. After
using vector identities and integrating by parts we finally obtain

f v (r-r')
E = —vxB+ —

2
—1 —vx6B+Vx lt, 2 5B(r')d r'

f2 J~ 2v(r —r')'

This expression verifies our earlier remarks that E = —vxB only if A. = f, but that E, =—(E) =- vxB,
never theless, since the average of the extra term vanishes. '

The charge density is obtained from the divergence of Eq. (11), p =A. v V xB/4trg . The result differs
from what would be obtained from the rigid low-velocity Lorentz transformation of the static current
distribution j, = VxB/4& by the factor A.'/f'.

Using Eq. (11) we obtain the first contribution to j in Eq. (2). To obtain the second contribution it is
necessary to solve Eq. (1) for the moving order parameter. This solution is obtained immediately by
slightly generalizing that of Schmid, Caroli, and Maki to allow a component v„:

a =Q„C„exp[-ea,{x—v„t- nk/280, +1'yu, /4eB, )'+x(nk+-,'yv„)(y —~, t)]. (12)

The contribution to the current obtained by substituting this expression into Eq. (2) is the uniformly
translating static vortex current distribution j, (the static fl and 4 are also uniformly translating as
assumed earlier) plus an additional term

—x(v«, ) I &I /16~e& = ~(- vxB,( —,( I &I')+&'vx+)/t'

This term conbined with the others gives the final divergenceless expression for the current,

j= —g'vxB +j +o —,—1 VxJ, 5B(r')d'r',
2& r r''

where v' = o(1+ ('() b. ) ')/2&').
The current expression thus derived is indeed a uniform transport current j, , the translating static

current distribution j, plus a backflow current j„, which is necessary when the two screening lengths
g and A. are unequal. For the model where &'= $'/12, the ratio A./&&I when z=A. /$ &I/412. For these
v values, j, is antiparallel to j, at the vortex core, and the current flowing through the vortex core is
less than the average transport current j,. The flow pattern of j, is that of two small vortices of op-
posite circulation centered on either side of the main vortex center in the +v and —v directions.

The extra magnetic field M, generated by j~ is obtained using V&~B, =4mj~ by simply removing the
curl operator in the j, term in Eq. (13). 58, vanishes at the vortex core and along the line in the j, di-
rection as far as 5B(~) is symmetric. It initially increases in the +v direction and decreases in the
—v direction when A. f &(5B,) =0., as is necessary not to disturb the flux quantization. In order to
pxeserve the two-di. mensional character of the solution we ignore the extra magnetic field generated
by j, . The extra screening currents which arise tend to concentrate j near the surface when the sam-
ple thickness ~ A. but do not change the average dissipation rate to lowest order. Neither, we now see,
does j&.

At this point it is still not obvious that the average dissipation rate (W) is now given by (W) = O'E, '.
Ratllex' lt ls necessary to der1ve axl expx'es81011 fol' W axld calculate tile Ilew appax'eIlt conductivity. Sucll
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an expression has been obtained by Schmid':

W= a(Vg + 8A/3t)'+y
~
(8/2e &t- ig) A~ '(4~X') (14)

In evaluating W, the first term simply gives vE, ' to order I A I' since &6E) =-0 and &(5E)') is of order
The second term is readily evaluated using Eq. (12) and (to=v A„which gives

The initial slope,

—(&,2/o) [do'/dBO]0, 2
= $ x'/g [1.16(2x —1) + 1],

which for large x equals 6/1. 16 = 5.2, is 3 times larger where the large pair breaking is due to para-
magnetic impurities than the result obtained when only the magnetic field is large. Also &W) is inde-
pendent of the direction of E, relative to the vortex lattice to order U and I A I'. Only the backflow,
which does not change &W), is orientation dependent. The possibility remains that an anisotropy may
occur for &W) in the higher orders of v or Ih I', which would give a preferred direction for the lattice
to line up relative to E,.

Our solution for the linear dynamic response of the vortex lattice near H„ is now complete. Conser-
vation of charge has led us to introduce an additional new characteristic length f necessary to describe
dynamic behavior of superconductors. Generally f may differ from the screening length A. for magnet-
ic fields. Only if X = P is the local charge density and electric field of the moving vortices given by a
rigid Lorentz transformation of the static supercurrent and magnetic field. When A. P a qualitatively
new feature must arise in order for a steady state to be achieved. This new feature is a backflow cur-
rent j, which goes through the vortex cores and returns around their sides. Although j~ arises as part
of the contribution to a form resembling a normal current aE, it does not contribute to the dissipation
and thus has more the character of a supercurrent. That this lossless current flows directly through
the core shows that thinking of the vortex core as a normal region of dimension -$, as in Ref. 1, may
be misleading. The order parameter only vanishes at a single point in the core, and the presence of
low-lying excitations and absence of a gap do not preclude supercurrents. We have also found similar
features in fields well below H„, which will be presented separately.
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