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. We report two new results concerning the propagation of electromagnetic waves with a
strength parameter v =e¢E/mwc sufficiently large (v > 1) to cause relativistic electron
velocities. The first is an analytic solution of the nonlinear equations for linearly polar-
ized waves in a uniform medium. The second is that propagation in a nonuniform medium
increases the nonlinear penetration effect; the maximum nonrelativistic plasma frequen-
cy w, which allows transmission of a strong wave is wpz ~ (WL/c) i 2eE,o.)/ mc, where L

is the density-gradient scale length and E; the electric field in the absence of a plasma.

Strong electromagnetic waves, intense enough
to make electrons relativistic,'*2 behave in plas-
ma quite differently from waves of smaller am-
plitude. This Letter deals with propagation of
waves with a strength parameter v=¢eE/mwc>1
in regions where the plasma density varies on
scale lengths large compared to the vacuum wave-
length, Previous work® on the acceleration of
particles by strong waves has largely concentrat-
ed on regions roughly a wavelength in size.

Solutions of the nonlinear equations governing
the propagation of circularly polarized waves in
uniform plasmas are available? and show that
strong waves may propagate in overdense plas-
mas provided the peak electric field E satisfies
the inequality

1 -923[1 +< ek )2]-1/11 -9'5(’”—0>>o. )
w, mew w \eE

In this Letter we derive an analytic solution for
the linearly polarized wave, previously studied
by single-particle® or numerical®** methods, in
the regime where self-consistent collective ef-
fects are important and we show that it possesses
a propagation condition very similar to (1). The
particle and field energy fluxes of these solutions
are then combined with a requirement of propaga-
tion at constant energy flux and the condition that
a WKB description be valid to derive the propaga-
tion condition for electromagnetic waves incident

1342

on a plasma slab from vacuum. The propagation
condition is

w,2<(wL/c)"?eE;w/mec, (2)

to within factors of order unity. Here E; denotes
the electric field strength in a vacuum and L is
the density-gradient scale length.

The model is a uniform, cold plasma with fixed
ions and no magnetic field. Akhiezer and Polo-
vin' have derived the nonlinear equations govern-
ing linearly polarized waves propagating in the
z direction:

d’p, 1 Bp, _
zz?( ) =0, 3

BT -1/B+p)'"-p,
digg[ﬁpz-(l +Pz)”2]+m=0. (4)

Here p =p/mc is the dimensionless electron mo-
mentum, Bc is the phase velocity, and all spatial
and temporal dependence occurs in the combina-
tion { =w,c (z - Bct), where w, is the nonrela-
tivistic plasma frequency. The formulas for the
electric field, etc., in terms of § are in the paper
of Akhiezer and Polovin.’

We consider large-amplitude waves (1p, |, ax
>1) in regimes where collective effects are im-
portant so that §>1. In these circumstances,
periodic solutions have lp,I> |p,| for most of
each period. Equation (3) then indicates that p,
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is a series of linked parabolas:

PZ
Pr=Py— (2€(3241)), OS§S%P,
5
ey e3P P’ L ©
- z(Bz 1), Zp\g\Py

where p,=(3P)?[2(82-1)]"*>1. The correspond-
ing solution for p, is obtained by rescaling (4):

dz RZ 1 1/2
5 [(1_n2)2+_ﬁ_2+;)_0_2] }

R -
ar’ |
(6)
2R -0
A= +R*/BF+1/pg [
where n=4¢/P -1 and R=8p,/p,=0(1). The dou-

bly periodic nature of R requires that dR/dn=0
at n=0 and n=1. Equation (6) is solved separate-
ly in two regions: a boundary layer near n=1

and 0 <79 <1. The two solutions are matched for
1>1-9>(B72+p, 22, where their regions of
validity overlap. Away from the boundary layer,
n satisfies the inequality 1 —n> (82 +p, ?)*/2 and
the small terms of order 872 p, 2 in the square
brackets can be neglected. The solution is®

R=A(1-1) - 30 +3(1 - 1) In(1 - 1%), )

where A is arbitrary. When1>1-7n=0, the
solution valid as -1 has R almost constant and
the asymptotic expansion

R(n) =Ry +(2+Rp)(1 - 1)

_ 16(1 — n)?
-iR (1 - <___________

2 0( 77) ln ROZB 2+p0-2 )
where R,=R(1). Matching (7) and (8) in their re-
gion of common validity yields

3

6 2,7 2
Ry=~ %’ A =% ln(4p023+882> . (9)

(8)

Figure 1 illustrates the linearly polarized solu-
tion.

What is the propagation condition for these lin-
early polarized waves? Combining the formula for
P, lfollowing (5)] with the relation® e2E%(m?w,2c?)
=28%p,(8% - 1) yields the condition

1 2k2

T w2 me
B2 w2 T3

—>0,

w eE (10)

almost identical to (1).

Now we turn to the propagation of strong waves
in nonuniform plasmas. The model is that of a
strong wave normally incident on a plasma slab
with fixed ions. Our goal is to derive conditions
under which the wave will be transmitted through
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FIG. 1. Strong linearly polarized electromagnetic
waves. The curves show transverse p, and longitudinal
R components of electron momentum [see Eq. (6)] as
well as the transverse electric field. All quantities
have been normalized to their maximum value. The
period is P.

the slab without reflection. When this is the case,
the solution continues to be a function of ¢ only -
through the phase ¢, although the amplitude is a
slowly varying function of z. In the absence of a
reflected wave, the energy flux of the incoming
wave is constant. The energy flux S associated
with a circularly polarized wave is purely elec-
tromagnetic,

S=cE?/4n8, (11)
while linearly polarized wave has contributions
from both particles and fields,

S=

121Tﬁ [1 + 2(R>]

__CE® [m( 5768%0,” >+ g]
T2m8 4p,2+9p%) 3]’
with B given by (10) and (R) denoting the average
of R over one period. The combination of (11)
and (12) with (1) and (10) predicts that there is
no point where 8 - « for finite plasma densities
and constant energy flux. Therefore, the wave
continues to be transmitted through the slab.
This is a consequence of nonlinear effects: As
the incident wave penetrates to higher density,
the electric fields increase by (11) faster than
the first power of w,?, allowing further penetra-
tion of the plasma according to (10).
However, the wave is not transmitted for arbi-
trarily high densities. The WKB concepts on
which (11) and (12) are based will be violated if

(12)
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there exists a point where the wavelength exceeds
the scale length over which the phase velocity
changes. For small-amplitude wave propagation,
this occurrence is identified with the reflection
of the wave. In the present nonlinear problem it
is difficult to make the analogous identification,
since the presence of a reflected wave alters the
solution for the incoming wave as well. To cir-
cumvent this difficulty, we seek a regime where
it is consistent to assume that there is propaga-
tion with no reflected wave present, i.e., where
the wavelength of the incident wave is less than
the scale length for phase-velocity variation.
These quantities can readily be estimated for the
circularly polarized wave. (The linearly polar-
ized wave is not qualitatively different, but the
logarithms complicate the algebra.) Since 8>1,
(10) gives

e’ E? /m?c? » w,t/w?;
and solving (11) for 8, one finds

4

. "2 4
Brv; *w,

w s
where v, =¢E;/mcw gives the incident electric
field strength in the vacuum. Therefore g’/B
=2L"', L being the density-gradient scale length,
Transmission will occur as long as

skL=3(w/cB)L =3wLwv?/cw,*>1. (13)

Solving (13) for w,? yields the propagation condi-
tion (2).

The reason why strong electromagnetic waves
penetrate plasmas more readily than small-am-
plitude waves is that the plasma current is limit-
ed to the value nec, instead of increasing with
E as ne?E/mw. A wave will be reflected only if
the plasma current is large enough to cancel the
displacement current. Relativistic effects thus
diminish the ability of the plasma to act as a di-
electric. The model of fixed ions limits our cal-
culations to values of v=eE /mcw in the range 1
<y<M,/m,. Qualitatively one expects that when
ions become relativistic, the current they gener-
ate will be subject to the same limitation and
will not cause major changes in the propagation
condition. In linearly polarized waves with phase
velocity large compared to the velocity of light,
both the longitudinal motion of electrons and
their density perturbations are small because of
the self-consistent electrostatic fields. Never-
theless, the longitudinal motion is important
since particle energy flux exceeds field energy
flux in linearly polarized waves. One additional
caution must be given: The solutions presented
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here may not be stable; indeed strong ac fields
lead to instabilities in nonrelativistic plasmas.®

Our work demonstrates that sufficiently strong
linearly polarized waves can propagate in plas-
mas where w,?>w? although a recent paper by
Noerdlinger® argued against this possibility.
Noerdlinger neglected electrostatic fields and
did not clearly specify which regions of retarded
time contribute to radiation by current sheets.
We have considered the problem of an electro-
magnetic pulse incident on a plasma density step.
The results show a simultaneous occurrence of
two effects: First, the longitudinal electrostatic
field becomes large enough to balance the ¥xB
acceleration. Second, the magnetic fields gener-
ated by the plasma become comparable to the
wave magnetic fields. These effects combine to
limit the longitudinal electron velocity below the
velocity used by Noerdlinger and thus alter his
propagation condition. A complete description of
how our periodic solutions develop inside a plas-
ma from a wave initially incident on the plasma’s
surface awaits further work.

The strong electromagnetic radiation believed
to occur in pulsars3'” is the principal astrophysi-
cal application of our results. Figure 2 shows
the maximum permissible plasma density for
transmission of the radiation according to (2),
with the additional assumption that the plasma-
density scale length L is of the order of the dis-
tance R from the pulsar. The term involving L
in (2) is an important feature not found in previ-
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FIG. 2. Vacuum strength parameter VﬁeE,/mcw,
and maximum plasma density [see Eq. (2)] for trans-
mission of electromagnetic waves, versus radius R.
The curves are based on magnetic dipole radiation
from the Crab pulsar (cf. Refs. 3 and 7) with surface
fields in the range from (1) 6 x10'to (2) 4x102 G. In
evaluating (2), we assume that L =R.
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ous theories.?’**” One can conclude that it may
be possible for pulsar radiation to penetrate to
large distances in the medium of the Crab nebu-
la, thus allowing the possibility of an energy
source in these large volumes. On the other
hand, penetration of the filaments with their high-
er densities and shorter scale lengths appears
doubtful. Thus, the results presented here would
support the hypothesis that the “amorphous-
mass” region of the Crab nebula is filled with
strong electromagnetic radiation, since the elec-
tron density in this region is less than 1 ecm™3.8
We have benefitted from discussions with
J. Arons, P, Kaw, R. Kulsrud, and J. Ostriker.
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The mobility of electrons on the surface of liquid ‘He has been measured from 0.9 to
3.2°K. Although scattering from atoms in the vapor appears to be the dominant scatter-
ing mechanism, the mobility of the surface electrons is significantly lower than that of
free electrons in the vapor. No evidence for surface-wave scattering is discernible.

The existence of extrinsic image-potential—in-
duced surface electron states in certain insula-
tors, including liquid helium, has been discussed
by Cole and Cohen! Subsequently, several mech-
anisms which might influence the properties of
electrons in surface states on liquid helium have
been proposed. Cole? has predicted that scatter-
ing by quantized surface waves would be the dom-
inant scattering mechanism at low temperatures
and would lead to an essentially temperature-in-
dependent mobility below about 1°K, More recent-
ly Crandall and Williams® have discussed the pos-
sibility of crystallization of the surface electrons.

To investigate the interactions of electrons in
surface states on liquid *He, we have measured
the mobility of surface charges between 0.9 and
3.2°K using the apparatus shown schematically in
Fig. 1(a). A movable support positions the cham-
ber containing the electrodes so that the liquid
surface is at a height # of 1 to 2 mm above the
set of three identical submerged electrodes.
Electrons are provided by a gas discharge located
in the vapor about 8 cm above electrode 2. The

potential difference V,, between electrode 2 and
the submerged electrodes, along with the distance
of these electrodes below the surface, determines
the surface charge density. A signal from the in-
ternal oscillator of a lock-in amplifier is applied
to an outer electrode of the submerged set. The
signal coupled by the surface charge to the other
outer electrode is amplified by the lock-in ampli-
fier and compared in phase with the input signal,
yielding data from which the surface electron
mobility may be determined. Direct capacitive
coupling between the two outer electrodes is re-
duced to a negligible value by the grounded cen-
tral electrode.

In normal operation the electron source was
operated continuously. When accumulated charge
reduced the field between electrode 2 and the sur-
face to zero, the surface would accept no more
charge and the entire potential difference Vg,
would appear between the surface and the sub-
merged electrodes., If C represents the capaci-
tance per unit length between the surface and the
submerged electrodes then it will be seen that in
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