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%e report two new results concerning the propagation of electromagnetic waves with a
strength parameter v =eE/mvc sufficiently large (v» 1} to cause relativistic electron
velocities. The first is an analytic solution of the nonlinear equations for linearly polar-
ized waves in a uniform medium. The second is that propagation in a nonuniform medium

increases the nonlinear penetration effect; the maximum nonrelativistic plasma frequen-

cy && which allows transmission of a strong wave is &&2= (cuL/c} eE&cu/mc, where L
is the density-gradient scale length and E& the electric field in the absence of a plasma.

Strong electromagnetic waves, intense enough
to make electrons relativistic, "behave in plas-
ma quite differently from waves of smaller am-
plitude. This Letter deals with propagation of
waves with a strength parameter v =eE/m&uc» 1
in regions where the plasma density varies on
scale lengths large compared to the vacuum wave-
length. Previous work' on the acceleration of
particles by strong waves has largely concentrat-
ed on regions roughly a wavelength in size.

Solutions of the nonlinear equations governing
the propagation of circularly polarized waves in
uniform plasmas are available' and show that
strong waves may propagate in overdense plas-
mas provided the peak electric field E satisfies
the inequality

1 — 1+ =1 — ~ &0. 1

In this Letter we derive an analytic solution for
the linearly polarized wave, previously studied

by single-particle' or numerical" methods, in
the regime where self-consistent collective ef-
fects are important and we show that it possesses
a propagation condition very similar to (1). The
particle and field energy fluxes of these solutions
are then combined with a requirement of propaga-
tion at constant energy flux and the condition that
a WVKB description be valid to derive the propaga-
tion condition for electromagnetic waves incident

on a plasma slab from vacuum. The propagation
condition is

(u, '& (u)L/c)'"eZ((u/rnc,

to within factors of order unity. Here E; denotes
the electric field strength in a vacuum and L is
the density-gradient scale length.

The model is a uniform, cold plasma with fixed
ions and no magnetic field. Akhiezer and Polo-
vin' have derived the nonlinear equations govern-
ing linearly polarized waves propagating in the
z direction:

d p„1 Pp.
P2 1 P(1+p2) ~2

p

d2
I:Pp (1 +p ) 1+p(1 ) 2

(4)

Here p =p/mc is the dimensionless electron mo-
mentum, Pc is the phase velocity, and all spatial
and temporal dependence occurs in the combina-
tion f =mr c '(s —Pct), where &u~ is the nonrela-
tivistic plasma frequency. The formulas for the
electric field, etc. , in terms of p are in the paper
of Akhiezer and Polovin. '

We consider large-amplitude waves ( (p„}
»1) in regimes where collective effects are im-
portant so that P»1. In these circumstances,
periodic solutions have I p„ I» ) p, l for most of
each period. Equation (3) then indicates that p,
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is a series of linked parabolas:

(~- -'P)'
(~ 1

(L —4P)'= —pa+
(

2 aP~L~P,
(5)

where p, =(4P)'[2(p' —1)] '»1. The correspond-
ing solution for p, is obtained by rescaling (4):

, , R
R — (1 —q')'+ —,+dn' - P' p.'

2R

[(1 ~2)2 +R2/P2+ 1/p 2] 1/2

where g -=4)/P —1 and R =—Pp, /p, = O(1). The dou-
bly periodic nature of R requires that dR/dq =0
at q =0 and q =1. Equation (6) is solved separate-
ly in two regions: a boundary layer near q =1
and 0 ~ @&1. The two solutions are matched for
1»1 —q»(J3 '+p, ')'", where their regions of
validity overlap. Away from the boundary layer,
q satisfies the inequa. lity 1 —q» (P '+ p, ')'" and
the small terms of order P ', p, ' in the square
brackets can be neglected. The solution is'

R =A(l —rp) —36'+ s(1 —rp) ln(l —rp),

where A is arbitrary. When 1»1—g~0, the
solution valid as q-1 has R almost constant and
the asymptotic expansion

R(q) =Ra+ (2+R,)(l —q)

16(1 —q)',( —0) ln R,Ro +po
(6)

1 c k 77 (dp tFLc

P' v' 2 &u eE (10)

almost identical to (1).
Now we turn to the propagation of strong waves

in nonuniform plasmas. The model is that of a
strong wave normally incident on a plasma slab
with fixed ions. Our goal is to derive conditions
under which the wave will be transmitted through

where R, =R(1). Matching (7) and (8) in their re-
gion of common validity yields

R, = ——, A= —,
' lnl

36P 2p 2

6 (4p 2+ 2

Figure 1 illustrates the linearly polarized solu-
tion.

What is the propagation condition for these lin-
early polarized waves' Combining the formula for
p, [following (5)] with the relation' e'E'(m'w~'c') '
= 2P'p, (P' —1) ' yields the condition

~ ~

l

i/4P
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FIG. j.'. Strong linearly polarized electromagnetic
waves. The curves show transverse p„and longitudinal
R components of electron momentum [see Eq. (6) j as
well as the transverse electric field. All quantities
have been normalized to their maximum value. The
period is I'.

cE' / 576P'p, '
72mP l&4po +9P (12)

with p given by (10) and (R) denoting the average
of R over one period. The combination of (11)
and (12) with (1) and (10) predicts that there is
no point where p - ~ for finite plasma densities
and constant energy flux. Therefore, the wave
continues to be transmitted through the slab.
This is a consequence of nonlinear effects: As
the incident wave penetrates to higher density,
the electric fields increase by (11) faster than
the first power of co~', allowing further penetra-
tion of the plasma according to (10).

However, the wave is not transmitted for arbi-
trarily high densities. The WKB concepts on
which (11) and (12) are based will be violated if

the slab without reflection. When this is the case,
the solution continues to be a function of t only
through the phase g, although the amplitude is a
slowly varying function of z. In the absence of a
reflected wave, the energy flux of the incoming
wave is constant. The energy flux S associated
with a circularly polarized wave is purely elec-
tromagnetic,

S = cE'/4mP,

while linearly polarized wave has contributions
from both particles and fields,

cE'
S = [1+—,'(R)]



Vol, AM@ 27, NUMazR 20 15 NzvEMazR 1971

there exists a point where the wavelength exceeds
the scale length over which the phase velocity
changes. For small-ampbtude wave propagation,
this occurrence is identified with the reflection
of the wave. In the present nonlinear problem it
is difficult to make the analogous identification,
since the presence of a reflected wave alters the
solution for the incoming wave as well. To cir-
cumvent this difficulty, we seek a regime where
it is consistent to assume that there is propaga-
tion with no reflected wave present, i.e., where
the wavelength of the incident wave is less than
the scale length for phase- velocity vax iation.
These quanti. ties can readily be estimated for the
circularly polarized wave. (The linearly polar-
ized wRV6 18 not qualltRtlv61y dlff6x'ent but the
logarithms complicate the algebra. ) Since t)»1,
(10) gives

and solving (ll) for P, one finds

P v 2~ 4~ 4

where v) =eE)/m ceo gives the incident electric
field strength in the vacuum. Therefore P'/P
=2I. ', I. being the density-gradient scale length,
Transmission will occur as long as

2kL = 2(cu/cP)L = 2(uL(u4v, '/c(u~'&1.

Solving (13) for ~~' yields the propagation condi-
tion (2).

The rea.son why strong electromagnetic waves
penetrate plasma. s more readily than small-am-
plitude waves is that the plasma current is limit-
ed to the value haec, instead of increasing with
E as ne'E/mu&. A wave will be reflected only if
the plasma current is large enough to cancel the
di.splacement current. Relativistic effects thus
diminish the ability of the plasma to act as a di-
electric. The model of fixed ions limits our cal-
culations to values of v =eE/mes& in the range 1
& v &M, /m, . Qualitatively one expects that when

ions become relativistic, the current they gener-
ate will be subject to the same limitation and

will not cause major changes in the propagation
condition. In lineaxly polarized waves with phase
velocity large compared to the velocity of light,
both the longitudinal motion of electrons and
their density perturbations are small because of
the self-consistent electrostati. c fields. Never-
theless, the longitudinal motion is important
since particle energy flux exceeds field energy
flux in linearly polarized waves. One additional
caution must be given: The solutions presented
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FIG. 2. Vacuum strength parameter v~ =eE&/me&a,
aud maximum plasma density [see ~. (2) j for trans-
mission of electromagnetic vraves, versus radius B.
The curves are based on magnetic dipole radiation
from the Crab pulsar (ef. Refs. 3 aud 7) with surface
fields in ths range from (1} 6 &&10 ' to (2) 4& N" G. In
evaluating (2), we assume that L =B.

here may not be stable; i.ndeed strong ac fields
lead to instabilities in nonrelativistic plasmas. '

Our work demonstrates that sufficiently strong
linearly polarized waves can propagate in plas-
mas where ~~'& x' although a recent paper by
Noerdli. nger' argued against this possibility.
Noerdlinger neglected electrostatic fieMs and
did not clearly specify whi. ch regions of retarded
time contribute to radiation by current sheets.
We have considered the problem of an electxo-
magnetic pulse incident on a plasma density step.
The results show a simultaneous occurrence of
two effects: First, the longitudinal electrostatic
field becomes large enough to balance the vxB
acceleration. Second, the magnetic fields gener-
ated by the plasma. become comparable to the
wave magnetic fields. These effects combine to
limit the longitudi. nal electron velocity below the
velocity used by Noerdlinger and thus alter his
propagation condition. A complete description of
how our periodic solutions develop inside a plas-
ma from a wave initially incident on the plasma'8
surface awaits further work.

The strong electromagnetic radiation believed
to occur in pulsax'8" is the principa. l astrophysi-
CRl RppllcRtlon of oui results. Flgux'6 2 show'8

the maximum permissible plasma density for
transmission of the radiation according to (2),
with the additional assumption that the plasma-
density scale length I. is of the order of the dis-
tance R from the pulsar. The term involving I
in (2) is an important feature not found in previ-
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ous theories. '*" One can conclude that it may
be possible for pulsar xadiation to penetrate to
large distances in the medium of the Crab nebu-
la, , thus allowing the possibility of Rn enexgy
source in these large volumes. On the other
handp penetx'Rtlon of the fllRIQents %'1th their high-
er densities and shorter scale lengths appears
doubtful. Thus, the results presented here would

support the hypothesis that the "amorphous-
mass" region of the Crab nebula is filled with
strong electromagnetic radiation, since the elec-
tron density in this region is less than 1 cm '.'
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The mobility of electrons on the suxface of liquid He has been measured from 0.9 to
3.2 K. Although scattering from atoms in the vapor appeaxs to be the dominant scatter-
ing mechanism, the InoMlity of the surface electrons is significantly lower than that of
fxee electrons in the vapor. No evidence for surface-%ave scattering is discernible.

The existence of extrinsic image-potential-in-
duced surface electron states in cex'tain insula-
tors„ including liquid helium, has been discussed
by Cole and Cohen. ' Subsequently, several mech-
RDlsIQs which might influence the px'opex't1es of
electrons in surface states on liquid helium have
been proposed. Cole' has predicted that scatter-
ing by quantized surface waves would be the dom-
inant scattering mechanism at low temperatures
Rnd %'ould leRd to Rn essent1ally temperature-in-
dependent mobility below about l'K. More recent-
ly Crandall and Williamss have discussed the pos-
sibility of crystallization of the surface electrons.

To investigate the interactions of electrons in
suxface states on liquid 'He, we have measured
the mobility of surface charges between 0.9 and
3.2'K using the apparatus shown schematically in
Fig. 1(a). A movable support positions the cham-
bex containing the electx'odes so that the liquid
surface is at a height A of j. to 2 mm above the
set of three 1dent1cal submerged electrodes.
Electx ons are provided by a gas discharge located
in the vapor about 8 cm above electx'ode 2. The

potential difference Vd, between electrode 2 and
the submerged electrodes, along with the distance
of these electrodes below the surface, determines
the surface charge density. A signal from the in-
ternal oscillator of a lock-in amplifier is applied
to an outer electrode of the submerged set. The
signal coupled by the surface charge to the othex
outer electxode is amplified by the lock-in ampli-
fier and compared in phase with the input signa, l,
yielding data from which the surface electron
mobility may be deter xnined. Direct capacitive
coupling between the two outer electrodes is re-
duced to a negligible value by the grounded cen-
tral electrode.

In normal operation the electron source was
operated continuously. When accumulated charge
reduced the fieM between electrode 2 and the sur-
face to zero, the surface would accept no more
charge and the entire potential difference Vd,
would appear between the sux face and the sub-
merged electrodes. lf C' repx esents the capaci-
tance pex unit length between the surface and the
submerged electrodes then it will be seen that in


