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P& are sufficiently different for the different
models so that experimental results, when avail-
able, will be able to discriminate among them.
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Group-theoretical analysis suggests the introduction of a new kinematical variable. Da-
ta on diffraction scattering exhibit remarkable universality in this variable. An s-depen-
dent slope formula is obtained which fits both K p and pP elastic scattering at all mea-
sured energies.

It is by now well known that the t-channel par-
tial-wave helicity amplitudes for an arbitrary s-
channel process

have to satisfy equations of constraint at certain

special kinematical points, e.g. , at t = 0.' The
structure of these ct ~straint equations is very
sensitive to the masses of the external particles
involved. In a group-theoretical approach the
constraint equations are a consequence of the
change in the symmetry properties of the scatter-
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ing amplitude under transformations which leave
the vector 6 =p „-pc invariant as t = b.' varies.
For example in elastic scattering in the s channel
as t-0, 4 changes from a spacelike four-vector
to a null vector, and the symmetry of the scatter-
ing amplitude "contracts" from O(2, 1) to O(3, 1).
However, at t=0, for an inelastic process 4 de-
pends upon the external mass situation. Strict
little-group analysis at t = 0 would imply Toiler
families for elastic scattering but representations
of the two-dimensional Euclidean group' —a com-
pletely different object—for inelastic processes.
However, even with spinless particles it is in

just this unequal-mass situation that analyticity
requires Toiler-type families. '

To avoid this confusion and ambiguity we have
sought and found a new momentum vector whose
little-group structure is mass independent. It
is the four-dimensional normal to the reaction
plane,

~p = 2& p.p.p~'ps'pc'/(pal+ps)'.

The normalization is in PrinciP/e arbitrary (up to
a scalar factor) but the above choice will be seen
later to be extremely convenient. We note that

n'= —y(s, f)/s',

where y is the Kibble' function defining the physi-
cal region boundaries.

We come now to the crucial feature: n& is a
null vector for forward scattering in any reac-
tion, independently of the external masses. Thus
the group analysis will be uniform for all physi-
cal processes.

We can now treat the scattering amplitude as a
function of, say, n, p =ps+p~, and q=(p„+p c)
and perform a group-theoretic expansion with
respect to the little groups of n. In the forward
direction this is an O(3, 1) expansion. Of course
( =0 is the forward direction for elastic scatter-
ing, while forward scattering for an inelastic
process only has t-0 as s-~. Thus we see that
in the general mass cass the scattering amplitude
does have Lorentz symmetry at t=0 if the energy
is asymptotic, giving some additional justifica-
tion to past treatments of this problem.

I et us return to our new little-group analysis.
If when n is null we assume that the generalized
partial-wave amplitudes have a I orentz pole in
the complex A. plane' at A = a(0) with Lorentz quan-
tum number M, then detailed analysis, ' allowing
for arbitrary spins, shows that at high energies
the forward scattering amplitude is dominated by
this pole and has the following behavior:

n'- t for s -, t small,

so that (5) is automatically consistent. It should
be noted that although (6) holds asymptotically,
n' is quite different from t at large angles and
noninfinite s values.

We plotted differential cross-section data for
pp —pp at all angles and laboratory momenta
greater than 5 GeV/c as a function of s and n'
and were amazed to discover that all the data fell
essentially onto one universal n' curve. We then
realized that for equal-mass elastic scattering,
n' reduces exactly to the variable p'p~' which was
introduced by Krisch" on totally different physi-
cal grounds t It is thus possible to think of n' as
a natural generalization of the Krisch variable to
arbitrary-mass reactions. We have also plotted
data for np, K'p, and m'p elastic scattering, and

y photoproduction, and in each case the data are
seen to cluster around a universal function of n'
only.

for s tending to infinity along a constant-n' hne.
We now require that our result reduce to the

usual Regge asymptotic form for s large and t
small, i.e.,

(f(s, n2) -b(n')s' " &, ,-,), P(t)s"~'~.

In fact our normalization (1) has just been de-

fg, g, g, x„'(s,~=0)-&g„g,, g, g,(p q/lpllql)'"' ' "
To leading order in s this is in complete agree-
ment with the results obtained in other group-the-
oretic treatments"' and in the analyticity ap-
proach if a(0) = o.(0). One of our Lorentz poles
will of course give the well-known structure of
daughter poles' in our j plane, but now in all
mass configurations.

Within the s-channel physical region we can
similarly perform an O(2, 1) expansion of the
scattering amplitude since there n'&0. If we as-
sume that the "partial-wave" amplitudes have
poles in the complex j plane, these will occur at
j = a(n') with residues b(n ). This will give us, in
the case of spinless particle scattering in the for-
ward hemisphere,

f(s, ~') -&(~')(p q/Ip llql)'"" (4)
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FIG. 1. A plot of the slope of the forward peak for
K'P elastic scattering [taken at Itl= 0.1 {GeV/c) j as a
function of 8. The data points are from Bef. 11. The
curve is the prediction of Eq. (9) with P=6.5.

Since a single dominant pole will give

dv/dt =A(n )s.
we conclude that the leading pole has

a(n') = l.
The effect of nonleading poles appears of course

in nondiffractive processes and also, for exam-
ple, in &'p elastic scattering below 6 GeV/c. In
the latter the large dips and bumps evident in do/
dt plotted as a function of t appear, when plotted
against n', as small oscillations about the over-
whelmingly dominant asymptotic [a(n') = I j term.
We shall not discuss the parametrization of these
proce88e8 in this Letter, but turn rather to R

most striking consequence of the n' universality
in diffractive processes —namely, the formula
for the slope of the forward peak.

If we put

exp(P, n') = — exp[b(s)]], (8)
do' dv do'

dt dt „2- dt

then our data plots indicate that po is a constsnt.
Equation (8) then yields the slope formula (for
m+M -m+M)

V(s) = P,[I—2(M+m')/s+(M'- m')'/s'j (9)

in contrast, e.g. , to the Regge prediction

b(s) = bo+2o. 'lns.

A fit by eye to the pp and K+/ differential-cross-
section data at laboratory momenta of 7 and 7.3
GeV/c, respectively, yields

P," ~ = 6.5 (GeV/c) ' and P,~~= 11.5 (GeV/c) '.
We have plotted b(s) as given by (9) for all val-

ues of s from threshold to 2000 (GeV/c)' (see
Figs. I and 2). For the pp case both the Serpu-
khov" and the new intersecting storage-ring'4
(ISR) results are included. Also shown is the
Regge result' with a~ ' = ~.

It is remarkable that b(s) provides a reasonable
interpolation over such a vast energy range. It
is Rlso worth noting thRt the term involving t}le
mass differences M'- m' in (9) is essential in ac-
counting for the difference between the pp and K p
slopes at lower energies.

We have also studied the slope parameter in w'p
and Pp scattering. In these reactions the pres-
ence of low-energy resonances causes the slope
to oscillate markedly and we find that our theo-
retical prediction gives a not unreasonable mean
interpolation. However a detailed discussion is
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FIG. 2. A plot of the slope cf the forward peak for PP elastic scattering [taken at .lt) = 0.1 {GeV/c)2] as a function
of s. The data points (closed circles) are from the Particle Data Group compilation (Ref. 12), triangles are the
Serpukhov data (Ref. 18}, and crosses the ISR results (Ref. 14). The curve is our prediction, Eq. (9) with P =11.5,
while the straight line is the Begge-pole prediction with o,& =3 given in Bef. 14.
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deferred to a future publication.
It is clear that n' has remarkable properties as

a kinematical variable and that it is meaningful
to consider amplitudes as a function of s and n'.
It remains a mystery, however, as to why the
dynamics seem to yield an s-independent result.
Nevertheless we would conjecture that the domi-
nant asymptotic form for all diffractive process-
es will turn out to be a function of n' only.
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