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We have examined the Newman~Penrose quantities for test fields in a Schwarzschild
background. We find that, unless a static condition has prevailed in the infinite past,
backscattered electromagnetic and gravitational waves make it impossible to define the
quantities as limits at future null infinity. An operational definition in terms of observa-
tions at finite radii is possible, but yields quantities which are not conserved.

An observer located at some distance from a
bounded source measures its field. If the source
is an electric charge-current distribution, he
measures the electromagnetic field F,,. If it is
an energy-momentum-stress distribution, he
measures the gravitational Riemann tensor R,,p,,“.
Surround the source region by a number of ob-
servers, each carrying a local coordinate frame
whose orientation is known, and combine their
measurements to extract global information about
the field. For example, by performing an angu-
lar integral calculate the monopole strength of
the electromagnetic field (radial electric field in-
tegrated over the sphere). We may imagine the
considerable surprise and interest accompanying
the observational discovery that the number ob-
tained is a constant in time—even when the fields
measured by each local observer vary in time.

Likewise, there has been considerable interest
in the apparently conserved quantities, discov-
ered by Newman and Penrose, associated with
electromagnetic and gravitational fields in asymp-
totically flat space-times.! There are six elec-
tromagnetic Newman-Penrose quantities (NPQ’s)
and ten gravitational NPQ’s. The Maxwell and
Einstein equations appear to guarantee that these
quantities will be constant in time. However,
their physical significance has been obscure, and
no attempt to relate them to conserved properties
of the sources (as a time-invariant electric mono-
pole measures the electric charge) has succeed-
ed.? 1t is difficult to study the properties of the
NPQ’s in detail because they are trivial for elec-
tromagnetic fields in flat space and for gravita-
tional fields linearized about flat space. (They
vanish if radiation is purely outgoing.)

Recent developments?® in the theory of perturba-
tions of the Schwarzschild geometry have enabled
us to analyze the NPQ’s in this nontrivial case.
We find that, unless the source was static in the
infinite past, backscattered electromagnetic and
gravitational waves make it impossible to define
conserved NPQ’s as limits at future null infinity,

An operational definition of NPQ’s is possible in
terms of observations at finite radii. But the re-
sultant NPQ’s are not conserved; changes in them
propagate outward with about 5 the speed of light
from epochs when the source is nonstatic.

In this Letter we use the electromagnetic NPQ’s
as an example. Full mathematical details for
both electromagnetic and gravitational perturba-
tions of the Schwarzschild metric will appear
elsewhere.

The six components of the electric and magnet-
ic fields can be combined into three complex sca-
lar quantities by projection of the field tensor on-
to a complex, null tetrad. In the notation of
Price,® these are

4y =Fuulumur (1a)
¢o=%va(l“nU—mum*v)y (lb)
¢ =F m*n’. (le)

It is ¢ ., that contains the dominant outgoing radi-
ation field. However, each scalar contains com-
plete information about the entire electromagnet-
ic field, since the other two can be computed from
it with the help of the Maxwell equations.

While the NPQ’s are usually computed from ¢, ,,
they can just as well be computed from ¢, (or
¢.,). The equation governing ¢, is the closest to
a conventional wave equation, and this simplifies
the physical interpretation. To identify the NPQ’s
in ¢,, one needs the results of two successive or-
ganizations of measurements by observers sur-
rounding the source. First, for each 7,f select
the dipole part of ¢, by an angular integral over
an /=1 spherical harmonic:

¢dipole(ty7) = fY1m(6: ¢)¢o(t; v, 9: (,0)
X sinfd6de. (2)
The analogous monopole integral would yield di-
rectly the conserved charge. To obtain the NPQ’s

one must analyze the detailed radial dependence
of ¢giporelt,”) along an outgoing radial null line u
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=const. In the Schwarzschild background,
u=t—-vr*=t—v—-2M In(r/2M -1). (3)

The conventional expansion for outgoing waves
assumes that at sufficiently large » the radial de-
pendence can be analyzed as a power series in

rY

‘I’(u’ T)Eyz(bdipole(ts 1/) :fo(u) +f1(u)/7
+fo)/rP 4 e (4)

The NPQ is (except for a factor 2) the coefficient
fo@), which is actually three complex quantities
corresponding to the three values for m in Eq.
(2).

The Maxwell equations applied to the form (4)
yield the result that f,@) is independent of «.
Thus, the NPQ is apparently conserved. Specifi-
cally, ¥ satisfies

U =W e +(2/72)(1 = 2M /7)¥ =0, (5)

This, after a change of variables to # and 7,
yields equations relating the f,’s:

i =5o (8a)
fa' =0, (6D)
f",:_(iﬂ)_(’i_‘_z_)fn_ﬁ(n__z)an_z. (6¢c)

2n

The function f, () is arbitrary; it is the relativis-
tic generalization of the flat-space dipole moment
of the sources. It is determined, in principle, by
matching to an interior solution in the source re-
gion. In flat space only f, and f, would be non-
zero. The functions f,(), n= 3, are obtained by
successive iterations of Eq. (6c) and represent
relativistic corrections to the flat-space propaga-
tion of the fields; i.e., they represent backscat-
ter.* Equations (6¢) also determine the static val-
ues of f, and the f, in terms of f,. In particular,

fZ:%M(fl)StatiC' (7)

The paradox of the NPQ’s is that, for an initial-
ly static source, the value of f, is determined by
the initial static value of f,, and it cannot change
even after f, and the f, become nonstatic. Howev-
er, it seems physically necessary that a motion
of the sources which lasts for a finite retarded
time should generate a radiation field that be-
comes static, at least asymptotically, in the fu-
ture. A net change in f, due to the motion of the
sources should then produce a new static value of
f», given by Eq. (7)—which it cannot, because Eq.
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(6b) demands that f, be constant,

The resolution of the paradox can be illustrated
by a simple example. Assume that, at retarded
time # =0, f,() changes instantaneously from an
initial static value D to a new constant value D’.
Direct integration of Eq. (6) gives, # >0,

_D' EMD I 2M(D’ =D)(=)" o+ 1"
¥= y TR +n§3 @2r)"
M2 M%u
+O<7§", P ,">-(8)

The terms neglected are small compared to those
kept for all #/7, as long as » >M. Evidently, as
long as the series converges, the NPQ (%MD)
“remembers” the old value D and is conserved.
But the series diverges for u >2r—i.e., it di-
verges inside a sphere that moves outward at as-
ymptotically 5 the speed of light.> When the ser-
ies diverges, the NPQ’s become ill defined and
cannot be evaluated uniquely from data in that re-
gion. Only if observers extend all the way to 7

= can the conserved NPQ be evaluated for all #:
The quantity measures the old static dipole mo-
ment using incveasingly distant data, and is in no
way velated to the motion of the sources after
they become nonstatic.

Does space-time at fixed » become asymptoti-
cally static again? Analytically continue the solu-
tion for ¥ to # > 27 by summing the dominant
terms in (8). The result is

MD 3M(D'-D)uu+8v/3)
r2 2 ¥? (W +27)?

+o<¥§>. ©)

(10)

D' 3
\Il_y +2

As u — o with 7 fixed,

D’ 3umD’ M M?
\I"’T"' 72 Y\ s )
vor

When u# > 27, local measurements will yield an
apparent new value of the NPQ which is related
to the new value of the static dipole moment in
the same way the old value of the NPQ was relat-
ed to the old value of the static dipole moment.
In a strict mathematical sense this value is not
the “correct” NPQ obtainable from data inside
the cone u =27, Operationally, with finite mea-
surement errors, there is no way to distinguish
an “apparent” value from a “correct” one; in a
real, physical sense the NPQ has changed its val-
ue.

Thus the paradox is resolved: A mathematical-
ly precise NPQ is conserved if it exists, but it
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only exists outside the %—speed-of—light cone from
when the source fi7st becomes nonstatic. An op-
erationally measurable NPQ may be defined each
time the source becomes static again for a suffi-
ciently long interval, but it can change in value
between the different static epochs.

The above discussion lacks mathematical rigor.
However, the same conclusions can be derived
rigorously from an expansion of the form

U=fo)+ L’@ + %gl(r,u)

M2
+';;gﬁr,u)+--', (11)

which is valid for all # at all ¥ >M. Summation
of the leading terms in (8) is equivalent to a cal-
culation of g,(»,#), the first-order backscatter.

Why do the NPQ’s fail at # =27? An analytic
solution to the vacuum-field equations with an out-
going boundary condition must become singular
on some past light cone of Schwarzchild space-
time. This is because the generic outgoing-wave
solution is generated by a source, so if we propa-
gate a solution backward in time refusing to in-
sert a source, we encounter a singularity on the
locus of our “last chance” to put the source in;
this, essentially, is a past light cone. Now re-
call that a power series converges or diverges in
a disk in the complex plane. For »>M, the dom-
inant contribution to ¥ is essentially a power ser-
ies inu/r [e.g., Eq. (8)]. Hence a physical singu-
larity at # = — 27 leads to a divergence of the ser-
ies at # =+27. In short, the %—speed-—of-light
sphere is a mathematical ghost of the past light
cone, a consequence of the prescription that we
analyze the data in #,7 coordinates to obtain the
NPQ’s. [It will be noted that the past light cone
is actually # = - 27*, not u = - 27, This sloppiness
arises from our neglect of terms of order M2 in
Eq. (11).]

There are mathematical difficulties with the
NPQ’s even when they are defined at future null
infinity. A net change of the electromagnetic di-
pole moment in a burst of radiation of # ~u, gen-
erates a line u —u, =2y across which the NPQ’s
cannot be continued as conserved quantities.
These lines, from a series of such changes at
progressively earlier times, are everywhere
timelike, but they accumulate at future null in-
finity (see Fig. 1). If the amplitude of the chang-
es in the dipole moment does not go to zero (i.e.,
if the dipole moment is not asymptotically static
in the infinite past), the limit defining the NPQ’s
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null ©
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t=-4 =

etc. [
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FIG. 1. By a conformal transformation, the infinite
ranges of ¥ and ¢ are shown in a Penrose-Carter dia-
gram. The Newman-Penrose quantities in Schwarz-
schild space-time cannot remain conserved across
lines which originate when the field sources are non-
static, and which travel outward at approximately 5 the
speed of light. If the sources have been nonstatic for
all time, there is an accumulation of these lines at
null infinity—even though each line is everywhere time-
like. Shown here are the “5~speed-of-light cones” orig-
inating at times t=0,~1,-2,—~4,+++ —64; the accumu-
lation is already evident. If follows that the Newman~-
Penrose quantities cannot be defined as a limit at null
infinity.

at future null infinity does not exist. This is gen-
erally the case even if the sources have radiated
a finite energy in their infinite past history.

We conclude that the NPQ’s in a Schwarzschild
background represent an information structure in
the curved-space propagation of waves. The
NPQ’s “remember” an initial static value of the
dipole moment (electromagnetism) or the quadru-
pole moment (gravitation), but for an observer at
fixed » they remember it only for a finite time.

If defined at null infinity, the NPQ’s exist only
for a source which was asymptotically static in
the infinite past. If measured at finite 7, they
can be defined (or redefined with a new value)
when the source has been static for a long time,
Au>7r,

The conclusions outlined here are equally valid
for electromagnetic NPQ’s in any metric theory
of gravity (e.g., Brans-Dicke), for gravitational
NPQ’s in general relativity, and for NPQ’s asso-
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ciated with nongravitational fields of any integer
spin.
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Matter in Superstrong Magnetic Fields: The Surface of a Neutron Star*
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In huge magnetic fields (B 210!? G) matter forms a tightly bound, dense (210%g cm™9)
solid with properties of a one-dimensional metal and a work function of the order of a
keV. Electron field emission from the sharp surface of a pulsar is much easier than ion
emission; it is estimated to be cut off when the stellar rotation period exceeds several

seconds.

The enormous magnetic fields (B~10'%~10'3G)
which are assumed to thread the surface of ca-
nonical neutron stars (pulsars) dominate the
motion of electrons and the structure of matter
in the stellar surface. The form of such matter
and its properties are discussed below, together
with a possible consequence for pulsar observa-
tions.

In minimum-energy degenerate eigenstates for
electrons in a uniform magnetic field B the par-
ticles are effectively confined to move in tubes
of radius

i<m;‘c3>ﬂz~ 2.6x10°*

P=mc\ TieB B2 cm. (1)
around a flux line. The infinite degeneracy as-
sociated with the arbitrariness in position of
the flux line is most conveniently exploited in
problems with cylindrical symmetry by using

cylindrical eigenstates of approximate radius
p,=@n+1)Y%H (n=0,1,2,+-+) (2)

on which the electron motion is centered (“Landau
orbitals”).! All lowest-state electrons have the
same spin direction (antiparallel to B). Excited
states which describe spin flip or motion greater
than zero point perpendicular to B are excited

by integer multiples of eZB(mc) '~ 12B,, keV
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(where B, is the magnetic field in units of 102
G). The canonical magnetic fields of pulsars are
large enough that the excited states do not enter
significantly into the description of free atoms or
condensed stellar surface matter.

The strength of a magnetic field on an atom of
atomic number Z is characterized by the dimen-
sionless parameter

n:ﬁg__< B

Zp, \4.6x10°Z3

1/2
) , Z>1, (3)
which is the ratio of the Bohr radius of the most
tightly bound electron when B=0 to the cylinder
radius of the atom formed by putting exactly one
electron into each Landau orbital. There are
three qualitative regimes®3: (i) n> 1 (ultrastrong
B), (i) 1>>n1>Z"%2 (“strong” B), and (iii) Z %2
> 7 (perturbative B). In regime (iii) B is suffi-
ciently weak that conventional perturbation treat-
ments are adequate. In the ultrastrong field
regime (i) the lowest-energy state of a single
atom is achieved by successively putting single
electrons into Landau orbitals which keep them
(in directions perpendicular to B) much closer

to their nuclei than can the nuclear Coulomb
field alone. The resulting atoms®™* are small
and elongated along B with energies (relative



