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We propose a semiphenomenological model for the elementary phonon excitations in
noncrystalline solids. This model can explain the low-temperature anomalies in the spe-
cific heat and therxnal conductivity of amorphous materials which have been found in re-
cent experiments.

&p z recent series of experiments Zeller and
Pohl' and suoseque1&'. .'&. ~&&nard' and Lead-
betters have investigated the specific ne="-.t & End

the thermal conductivity ~ of various amorphous
materials below 1 K. The specific heat was found
to exceed the expected Debye 7' contribution at
the lowest temperatures attained (0.1'K) by as
much as 2 orders of magnitude. The thermal con-
ductivity was found to differ from the normal T'
dependence observed in crystalline solids in the
same temperature range. The experimental re-
sults indicate that the anomalous behavior of C
and x is independent of structural details of a
particular ~mar„.,gus s"mple and thus s6e~lis to
be a general feature of the amorphous state.

The purpose of this note is to suggest a model
for the lom-lying excitations in a noncrystalline
solid that provides an explanation of these data.

One of our basic assumptions about the elemen-
tary excitations is contained in the following form
of the propagator for low-frequency phonons:

with Imz &0. The function ru, (q) describes the
phonon dispersion. For small enough values of

q we may set to, (q) =v,q, where e, denotes the

average acoustic phonon velocity. The third
term on the right-hand side of Eq. (1) is similar
to a Drude-Maxwell form4 for a frequency-depen-
dent bulk viscosity with a relaxation time &. In
our case 7. describes the time scale for some
kind of structural relaxation, i.e., the time it
takes for the random network of moleeules in the
amorphous solid to adjust itself to the local varia-
tions in stress which are caused by the sound
waves. Generally, & is expected to be tempera-
ture dependent and to increase as T-0. The
factor g&0 in Eq. (1) is assumed to be tempera-
ture independent but will, in general, depend on

q. It will be seen later that@(q) for q-0 must
approach a finite value g, which determines the
thermal eonduetivity for T-0.

The spectral density of states, —ImD(q, &e+i0)
= -ImD„obtained from Eq. (1), is a, I.orentzian
peaked at frequei. 'c~ "5 ' ~ =-~Op' if &«& ~-

above form of the phonon spectrum-. . ''8 ceptR&nly

not specific to the amorphous state. In order to
specify the model further for this latter ease,
we note that in these materials there is no one-
to-one correspondence between phonons and the
normal modes. One immediate consequence is
that the phonons are damped as in anharmonic
crystals. In addition„however, there mill be. in
noncrystalline solids, a spectrum of localized
excitations which are expected to contribute to
the spectrum at low freqUencies a background
"noise" extending out to some comparatively
large momentum q . It is assumed here that
these excitations are taken into account in a
crude way by the low-frequency, large-momen-
tum part of the above Lorentzian.

To summarize our picture for elementary ex-
citations in amorphous materials we assume
(i) a, hydrodynamiclike spectrum of vibrational
states with tails extending out to some cutoff mo-
mentum q„, and (ii) a structural relaxation time
7 which is weakly diverging as T-0. We empha-
size that the two assumptions are not independent:
We expect the large-momentum exeitations to be
responsible for a comparatively short relaxation
time.

The next step is to calculate the specific heat
within our model. Because of phonon damping
and the tails in the spectrum, it is in general not
correct to insert -Pq + ImD, for the density of
states in the Debye formula for the specific heat
of phonons. Instead, we use an exact expression
for the free energy I' as a stationary functional'
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—2P(F F-,) =qfD] —QIM(q, ~„)D(q, ~„)—ln[-D '(Il, z„)]+In[-D, '(II, z„)]).

Here P=T ' (l=l =1) z =2niTn. n =0 +I ~ ~ ~ .
and the sum on q with q ~ q includes the three
polarizations. Formally, the self-energy M(Dj
is defined through 5y/5D =M. The correct value
of the free energy is obtained by putting D ' =B, '
-M The functional F is stationary (5F/0D =0)
at this point 1n the D space. Oul forITl f01 B
givell by EII. (I), with Do =8 —

QPO (q), deflIles R

self-energy M =I (00 (q)AT/(1 —I 87) RIld is tllus
an implicit approximation for rp.

We obtain the entropy S(T) from 5F =F(T+5T)
-F(T) =-S(T)5T. The procedure is now to cal-
culate OI' for a general Mwith D '=Do ' —Mand
to insert the approximate form for Min the final
expression for S. The calculation is similar to

r

the one for condensed bosons' except that here

!we vary I around a fixed temperature T+0 be-
cause of the 7' dependence of ~. The final result-
for 8(T) reads

1 e (08(T) =— d(u( s )-, —,A((u, T),

where

A =-P-„[ImM ReD, +Imln(-D, ')].
The specific heat, from EII. (3), is given by

1 f' e w BA co BA

The sum on q in the expression for A, wj, th g)
from Eq. (I), can be performed analytically, and
we arrive at

2~2 T ' I slnT, ™ e", I (xTT)'+ + 3j+T(goq07T)dx(g 1)2x[I ()2] (5)

The f1rst term ls the Debye speclflc heat CD.
The second term is due to the mass operator
M(q, ~). The momentum q, is defined by

path / for the acoustic phonons,

i.-..d'q g'(q) = —,'~(g, q, )'.

Ill del'lvlllg expression (5) we 11RVB lleglected
terms of the order g(q ~ q ) as compared to I
and terms of order [~/+0(q )]", n)4. It should
be noticed that ~,(q) does not enter the second
term of EII. (5) so that this result is Iluite gener-
al. %e now take z =AT ', v &Q. If v ~ 1, then
the second term in EII. (5) vanishes more rapidly
than 7' as T-Q, and the specific heat is given by
the Debye law. In the case v ~1, however, the
specific heat will be dominated at sufficiently
low temperatures by the second term which be-
haves like T' '" for T-0 and which arises from
the low-frequency, large-momentum part of the
vibrational spectrum. The existence of these
states is, in the present model, the distinguish-
ing feature of the amorphous state.

In order to estimate the thermal conductivity
we argue that only the propagating acoustic pho-
nons (which contribute the T' term to C) carry
the hear, and we use the kinetic formula

K =
3f d(0 C D((d)l (&)&0,

where f d~ CD(up) =Co, Rlld wltll t116 mean fl 86

~ 5

FIG, 1. The specific-heat anoxQalg 1n vltreoo. s Si02y
plotted as C/CD vs T, with CD =8.07&10 IT'S g

' K
as given in Ref. 1. The data below 2'K are from Ref. 1,
those above 2'K from Bef. 10. The solid line is the the-
oretical curve as described in the text.
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FIG. 2. Comparison of the experimental thermal con-
ductivity of vitreous Sio& (Bef. 1) with the theoretical
curve (solid line).

the second term by a factor of 10 ' at 1'K. Hence
K cc T' ' for T ~ 1'K. In Fig. 2 the experimental
results for K in vitreous Sio, are compared with
the theoretical curve, where we used' v, 4.1
x 10 ' cm/sec and g, = 3.4 x 10 '.

The mean free path of phonons in vitreous Sio,
at a frequency w= 1.65x10" sec ' and tempera-
tures slightly above 1'K was estimated from
light-scattering experiments' to be between 1 and
0.1 cm. For this frequency and for T=1'K we
find, with our parameters, l =3&&10 ' cm. This
is surprisingly large but still an order of magni-
tude, at least, below the experimental value. "
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as obtained' from Eq. (1). The result for ~ is

4 T'7 1 T
K +—

157'' 'Vogo O'V OogoT
(8)

With our assumption T = AT ', v (1, the second
term in Eq. (8) dominates at low temperatures,
giving Kc(- T for T-O.

In Fig. 1 we compare the excess specific heat
C/CD as obtained from Eq. (5) with the measure-
ments for vitreous Sio,. The integral in Eq. (5)
was calculated numerically. We have chosen 7
—3.6 x10 T i sec (v= ~). The factor gogcso
= 7.7 x 10' sec 1 was determined by the fit to the
experimental data at T= 0.15'K. Below 1'K we
have /CC-n1 o T' and thus C~T for T-0
indicated experimentally. We remark that the
deviations at higher temperatures result from
neglecting phonon dispersion in the Debye spec-
ific heat.

With the above choice for 7, the first term on
the right-hand side of Eq. (8) for ~ is less than
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