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and

Ar ' '('D) + e —Ar '('S)

are seen to have RE's sufficiently close to the
ionization potential of D, to produce the wide Ar'
kinetic energy distribution with ~ =0.
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A mechanism is proposed for the heating of a plasma with a high-current relativistic
electron beam which makes essential use of the plasma return current induced by the
beam. From overall energy conservation it is concluded that a large fraction of the beam
energy is converted into plasma thermal energy. For reasonable parameters the heat-
ing occurs through ion sound turbulence generated by the plasma return current.

Recent developments in technology have led to
the generation of beams of electrons with ener-
gies in the range 500 keV to 10 MeV and currents
in the range of 50 kA to 1 MA, of pulse durations
of the order of 50 nsec. The energy content in
these beams is as large as 10' J. The possibility
of using these beams in controlled fusion experi-
ments for purposes of heating a plasma to ther-
monuclear temperatures is of considerable inter-
est. In this Letter we point out one important
mechanism by which a high-current beam~ (v/y
8 1) can heat a plasma, and we estimate the rate
at which this heating occurs. The mechanism
does not involve the collective interaction of the
beam electrons with the plasma, which is expect-
ed to be weak for high-energy beams and small
beam-plasma density ratios. '

The injection of an electron beam into a cold
dense plasma (n~»ns, where n~ and nn are the
plasma and beam electron densities, respective-
ly) is accompanied by a return current which

acts to neutralize the magnetic field of the beam
if As/a «1 [where a is the beam radius, Xs= c/&u~

is the electromagnetic skin depth, and &u~=(4ve'n~/

I,)'" is the plasma frequency]. This result may
be understood as follows (in the rest frame of the

plasma): Assume that on a macroscopic scale
the plasma may be described by the generalized
Ohm's law

(
8 1 ~& (d& e—+—JP = ~ E+ J~XB,
Bt T ~ 47' rn C

where 7 ' is the effective collision frequency
and J~(x, t) is the plasma. current density. Exter-
nal magnetic fields are not included; however,
in the main the results below appear to hold also
for beams propagating parallel to an external
magnetic field, and indeed such fields may be es-
sential for stability of the beams. In addition,
we neglect for the moment the self-magnetic
field due to the plasma and beam currents so
that the Hall contribution in Eq. (1) is absent.
Then by operating on Eq. (1) with V&&Vx, and us-
ing Faraday's and Ampere's laws (assuming
overall charge neutrality' ), we obtain

—+—vJ= ——(J+J),2 1 2 P ~ P B (2)
Bt ~, Bt

where the tota. l current density J(x, t) = J~(x, t)
+ J (x, t) is written as the sum of the plasma and

beam contributions. Estimating the scale of the
gradient operator in Eq. (2) to be of the order of
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the beam radius a, it is clear that for Xz/a «1
and short times we have J =- J~, so that J~
flows within the beam channel. The theory of the
induced "return current" J~ has been discussed
in detail by a number of authors. " The current
J~ is produced by the plasma electrons stream-
ing in the direction opposite that of the beam with
the small velocity v~= —(nz, /n~)vs«vs, where vs
= c is the beam propagation velocity. Observa-
tions supporting the theory have been described
previously. ' Note that the near cancelation of
the beam and plasma currents lends support to
the neglect of the self-magnetic field in Eq. (1).

Pbr slow time variations of the return current,
BJ /Bt «J /T, Eq. (2) may be rewritten as

t s A@ 21 ~ 8V'i J =-—J'. (3)
I Bt 7, ) et

For the case of a beam with a sharp front propa-
gating in the +z direction, for example of the
form J (x, t) = J (x, y)U(v~t —z) [where U(x) is
the unit step function, U(x&0) =1, U(x&0) =0],
the right-hand side of Eq. (3) is nonzero only at
the beam front. Behind the front the plasma cur-
rent density J (x, t) obeys a diffusion equation.

d'x —= — d'x Jo ~ Eo — d'x (5J 5E)-—
Bt

Thus the characteristic decay time is tD =a (a/
Xz)', a result previously obtained by a different
method by Lee and Sudan. ' The corresponding de-
cay length is L =tDv~, and we assume L/a» l.

An important consequence of the plasma re-
sponse to a relativistic beam not previously ap-
preciated is that the electric field, which sus-
tains the return current, at the same time ex-
erts a substantial drag on the beam. This drag
may completely stop an intense beam (v/y ~ 1)
in a distance short compared with the decay
length I.. A large fraction of the energy lost by
the beam goes into heating the plasma.

For a discussion of the disposition of the beam,
plasma, and field energies consider an infinitesi-
mal volume contained between z and z+dz (with
the z axis in the beam propagation direction) and

extending in the perpendicular x-y plane to infin-
ity. The total electric field and current density
are written as E=Ep+5E and J= Jp+5J, where
I, and Jp are slowly varying macroscopic quanti-
ties appearing in Eq. (1), and 5E and 5J are rap-
idly fluctuating irrotational quantities discussed
below. The beam current density J~ is assumed
to be only slowly varying. ' The appropriate
Poynting's theorem for this volume is'

(4)
8m

(Sb)

where the angular brackets denote time averages over the rapid fluctuations and where it has been as-
sumed that the fields decay for radial distances large with respect to the beam radius. The field ener-
gy ~Ep and the Poynting flux fx:Ep are neglected as is valid if the plasma conductivity 0 is sufficiently
high, o =&@& v /4v»c/A. z or vp' »4v, It is helpful to rewrite Eq. (4) in terms of the current densities
and magnetic fields associated with the plasma and with the beam, J= J~+J and B=B +B . One then
finds

8 2 (B) 2 B 8 s 8
d'x + d'x .—B = ——(K+ W), (5a)

9t 8m 4% Bt Bt

8' '-=
, dx —B=— dxJ -Ep,

4m Bt

where 8(K+ ~)/at is the rate of change of the
plasma internal energy,

BK/Bt = fd'x J," E, + fd'x (5J ~ 5E)

is the rate of change of plasma kinetic energy,
and W= f d'x (6E')/Sv is the field fluctuation ener-
gy. The rate of decrease of the beam energy is
given by f d'x J —E,. ~

For simplicity consider an electron beam with
a well-defined front. Suppose that the initial
beam electron energy y, (in units of m, c') is suf-
ficiently larger than unity that any changes in
this energy hy, even 5y/yo=l, represent only a
small change in the beam velocity, hvar/v~=5@/

yp'«1, and thus only a negligible change in the
beam current density Js. Hence in Eq. (5) we
may take sB /st = 0 behind the beam front. In a
time interval At = tf & tD, the plasma field B de-
cays from an initial value of B~=—B~ to a value
which may be written approximately as B~= —(1
—f) Bs. For ht =0, f=0, and for bt =t~ we have
f= l. It follows from Eqs. (5) that in the interval
&t, the e~e~gy lost by the beam is 2fUz, the en-
ergy put into the plasma is (2f —f ')U~, and the
energy put into the total magnetic field is f'U~,
where U~= fd'x (B )'/Sw is the magnetic field en-
ergy of the unneutralized beam. Evidently a
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fraction 1 —f/'2 of the energy lost by the beam
goes into the plasma, and the fraction f/2 goes
into the magnetic field.

Only a small value of f is required for elec-
trons of an intense beam to lose most of their ini-
tial energy y, to the plasma. The fractional
beam-energy loss may be written as

5y 2fU~ v
—,=f d-

po &0 Pl gpo Pl ~ C

for a beam of uniform density n~, where d is a
numerical factor close to unity. ' For say v/y,
~ 2, we have 5y/y, =1 when f=y, /vd s —,', and the
efficiency of transfer of beam energy to the plas-
ma, 1-f/2& —,', is close to unity. As the return
current decays, the ratio of the energy of the
total magnetic field to the energy of the beam in-
creases and reaches a value corresponding to
the Alfven-I awson limit' for f = (d/2)((1+ 4y, /
vd')'" —Ij. However, with a, suitable magnetic
guide field, larger values off (=y, /vd) may be
achieved.

The energy (2f-f')U~ put into the plasma is
partitioned between the kinetic energy K (of elec-
trons and ions) and the field fluctuation energy W.
The drift of the plasma electrons at velocity u~
is held relatively constant (5v~/v~=f) by the high
"inductance" of the beam-plasma system and
therefore the electron kinetic energy is mainly
thermal. If the fraction of the energy (2f-f')U~
which goes into kinetic energy is denoted by 0(

(=1), then the final temperature (T, +T,)& may be.
written thus:

Most of the beam energy is extracted (5y/yo =1)
with f=y, /vd, and for this f the plasma, tempera-
ture increases to (T, +T;)f=y, m, c'(n~/n~). It is
clear that the time t~ required to achieve this
temperature must be less than tD by a factor of
order y, /v. If the return current were to flow
for a time of order tD, then the energy dissipated
by the return current would exceed the beam en-

ergy by a factor v/y, . Thus for a beam with high

v/y we have t&«tD. The precise value of tz and

the factor a must be derived from a theory of the
microturbulence which we now discuss.

The microscopic processes involved in heating
by return currents are equivalent to heating with
currents induced by external fields. However,
the use of return currents avoids the skin-effect
limitations of currents induced by external fields.
Initially, the electron drift velocity v„=—u~ = (ns/

n~)U~ (in the +z direction) is assumed to be larg-
er than the electron thermal spread v,(t = 0) and
that of the ions v;(0), and we may reasonably set
the ion drift velocity' v«(0) =0. Consequently, in
the very early stages the electron-ion interaction
develops as a conventional two-stream instability.
The unstable wave grows until it traps the elec-
trons in a few growth times and spreads them
symmetrica, lly about the wave phase velocity over
its trapping width. However, the induction elec-
tric field Eo acts to hold the current density con-
stant so that at the end of this stage the electrons
have a "thermal" spread v, ~ v„„ the ions have
not been significantly affected, and the instability
passes into the ion-acoustic stage.

Heating rates for both electrons and ions a,nd

their final temperatures may be estimated by as-
suming that Fokker-Planck-type equations hold
for the distribution functions E(v, t). The first
moments of these equations provide

8 ~y Gd—J —~E = — Q e d'uD'=I'
4'|T g-i ~ Bv

D, = (e,/m, .)'(5E(x, t)I „dt' 5E(x(t'), t')),

5E is the stochastic electrostatic field, and E, is
the systematic electric field of Eq. (1). The re-
turn current is maintained by the relativistic
beam through E, and therefore 8J~/Bt =0. Thus
with E, determined by Eq. (8), the second mo-
ments of the Fokker-Planck equations give the
time evolution of the mean thermal energies.
Hence the heating rates are determined in princi-
ple from the statistics of the electric field fluctu-
ations. Here, however, more qualitative esti-
mates will suffice.

The particle heating is now dominated by the ion
acoustic instability for which u, «u~/ik i

& v„,&v, .
Without going into the intricacies of this insta-
bility we note that Sagdeev" suggests an effec-
tive collision frequency T„'=10 '(u„/C, )(T,/
T;)~~;, where ~~; is the ion plasma frequency.
It is reasonable to assume from plasma turbu-
lence experiments" ion temperatures T; ~ T„
and we have (m;/m, )"'&v„,/C, & 1, so that 10'(m, /
m;)'"(T;/T, ) &T ~&a~, &10'. Thus we have crude
bounds on tD =7.~(a/a~)'. Neglecting other pro-
cesses this instability continues until either
(a) the ions are trapped, or (b) there is linear sta-
bility, C, -. v„, , or (c) an equilibrium is reached
because of waves convecting energy out of the
beam channel.

As an illustration consider a, beam with v/y,
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=3.5, y, =2.5, and ns =5&&10" cm ' (i.e., a 1.3-
MeV, 150-kA beam of 1.4 cm radius) and a hy-
drogen plasma of density n~=10" cm ' so that
ns/n~=0. 05. The final temperature is (T, +T&)&
=30 keV by Eq. (7) with f=yo/v. The time re-
quired to achieve this temperature falls in the
range 30 nsec & t& & 1 p, sec.

We thank Dr. R. E. I.ee for valuable discus-
sions on the theory of relativistic beams and re-
turn currents.

'The notation is v =Ã~, ; Ã is the number of beam
electrons per unit beam length, w, is the classical elec-
tron radius, and y=

y~~
——(1-es /c )

+le neglect the beam-plasma two-stream instability.
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(1970)].

It may be shown that neglect of the displacement cur-
rent in Eq. (8) is valid for distances longer than eT
behind the beam front.
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Some properties of 3He adsorbed on the surface of liquid helium are determined from
measurements of the surface and interfacial tension of 3He-4He mixtures. As a mixture
approaches phase separation, the 3He adsorbed on the surface grows continuously into
the upper, 3He-rich phase. At all temperatures the limit of low surface density is well
described by the Andreev model, although there is some evidence for a weak, attractive
quasiparticle interaction.

Andreev' has shown that the behavior of the sur-
face tension of dilute solutions of 'He in He at
high temperatures (T & 0.5 K) demonstrates that
some 'He is adsorbed on the surface of the liquid.
In Andreev's model the adsorbed 'He is assumed
to be in a set of independent quasiparticle states
with energy spectrum'

e = —so +p'/2M.

The surface tension of the solution, 0; is then the
surface tension of liquid He, 04, reduced by the
two-dimensional "pressure" of the 'He quasiparti-
cle gas on the surface. From measurements of
60= v4 —0 at T&0.5 K and assuming that the sur-

face quasiparticle gas could be treated by Boltz-
mann statistics, Zinov'eva and Boldarev' deter-
mined approximate values for the surface binding
energy eo and the effective mass M.

There is considerable interest in studying the
many-body properties of adsorbed helium partic-
ularly in this case since the substrate (liquid heli-
um) is uniquely perfect and homogeneous. We
therefore have made further measurements of o
down to low temperatures (0.04 K) and over a
wide range of X, the concentration in the bulk
phase (30 ppm to saturation). Under these condi-
tions the adsorbed 'He can be changed from a
fraction of an atomic layer, when it behaves like
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