ERRATA

PARALLEL NATURE OF THE Λ_1 - Λ_3 ENERGY BANDS IN GERMANIUM. Stephen Koeppen, Paul Handler, and Stephen Jasperson [Phys. Rev. Lett. 27, 265 (1971)].

The value of the transverse matrix element in Eqs. (3) and (4) should be $P_t^2 = \frac{1}{2}(0.65)^2$, where 0.65 is the one-electron matrix element from Ref. 12 which neglects the spin-orbit splitting. This results in a value of ΔK_{111} from Eq. (4) which is too large by a factor of 2. In other words, the value of P_t necessary to give $\Delta K_{111} = 0.4$ a.u. is larger than the one-electron value by about $\sqrt{2}$, which is probably a result of the Coulomb interaction. The conclusions of our paper remain the same: The one-electron theory describes the data very well although a somewhat larger matrix element must be used.

OBSERVATION OF THE OPTICAL ANALOG OF THE MÖSSBAUER EFFECT IN RUBY. A. Szabo [Phys. Rev. Lett. 27, 323 (1971)].

The first sentence on page 325 should read, "Taking⁵ $\Delta B_z = 7$ G, we calculate at $\theta = 0^\circ$ the homogeneous linewidths $\Delta(\pm \frac{1}{2}, \pm \frac{3}{2}) = 35$ MHz, and $\Delta(\pm \frac{1}{2}, \pm \frac{1}{2}) = 5$ MHz."

In Eq. (1) read (I+1) for (I=1). In Eq. (2) the term $(\gamma/I)\vec{I}_i \cdot \vec{H}$ should be preceded by a negative sign.

SOME REMARKS ON THE $(\underline{3}, \underline{3}^*) \oplus (\underline{3}^*, \underline{3})$ BREAK-ING OF CHIRAL SYMMETRY. Riazuddin and S. Oneda [Phys. Rev. Lett. 27, 548 (1971)].

In Eq. (20), m_{π}^{2} , m_{K}^{2} , $m_{\eta_{8}}^{2}$, and $m_{\eta_{8}-\eta_{0}}^{2}$ should read as

$$\begin{split} m_{\pi}^{2} &= \epsilon_{0} \left[\alpha + (\frac{2}{3})^{1/2} \beta \right] + (\epsilon_{8} / \sqrt{3}) \beta, \\ m_{K}^{2} &= \epsilon_{0} \left[\alpha + (\frac{2}{3})^{1/2} \beta \right] - (\epsilon_{8} / 2\sqrt{3}) \beta, \\ m_{\eta_{8}}^{2} &= \epsilon_{0} \left[\alpha + (\frac{2}{3})^{1/2} \beta \right] - (\epsilon_{8} / \sqrt{3}) \beta \equiv A, \\ m_{\eta_{8}}^{-} &= \epsilon_{8} (\frac{2}{3})^{1/2} (\beta + \frac{1}{2} \beta') \equiv C. \end{split}$$

In the fourth line after Eq. (20), read $C(q^2 - p^2) \times (pq)^{-1} = B - A$ instead of $C(q^2 - p^2)(pq)^{-1} = A - B$. In Eq. (21), change $(m_K^2 - m_\pi^2)$ to $(m_K^2 - m_\pi^2)^2$. Equation (22) should read as follows:

$$\sigma_{\eta\eta'} = -\frac{c+\sqrt{2}}{3c} \frac{C}{m_{\eta'}^2 - m_{\eta}^2} \{ (1 - \sqrt{2}c) \\ \times [m_{\eta'}^2 + m_{\eta'}^2 - 2m_{\kappa}^2] + \sqrt{2}cm_{\rho}^2 \}$$

Equation (24) should then read $G = \{2 \text{ GeV}^2 - 1.8m_0^2\}$. For the values of m_0^2 lying between 0 and 1.5 GeV², $\Gamma(\eta' \to \eta \pi \pi)$ lies between 1.6×10^{-2} and 2×10^{-3} MeV. [The most realistic value $m_0^2 \sim 1$ GeV² gives $\Gamma(\eta' \to \eta \pi \pi) \simeq 0.2 \times 10^{-3}$ MeV.] In any case, our conclusion does not change.

Eu¹⁵³ INDIRECT SPIN-SPIN INTERACTION AND INHOMOGENEOUS LINE BROADENING IN FER-ROMAGNETIC EuO. J. Barak, I. Siegelstein, A. Gabai, and N. Kaplan [Phys Rev. Lett. <u>27</u>, 817 (1971)].

The drawings, but not the captions, of Figs. 1 and 2 should be exchanged.