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Vfe propose a Zener-like model for narrow bands, which includes the intra-atomic
Hund's-rule coupling of d electrons. Each of Hubbard's split bands is then shown to
split again into spin-polarized sub-bands, yielding ferromagnetism when the density of
Zener electrons is low but yielding antiferroxnegnetism when the density increases.

In the Hubbard theory of narrow bands, ' the in-
tra-atomic repulsive interaction is responsible
for the insulating properties of materials with
partly filled d bands and may also be the cause
of antiferromagnetism. ' However, it is general-
ly considered that the exact ground state of the
Hubbard Hamiltonian can never be ferromagnetic.
In fact, the Lieb-Mattis theory' is inclined to sug-
gest the impossibility of ferromagnetism for a
lattice of atoms in orbitally nondegenerate states.

According to Herring, 4 the model which was
originally proposed by Zener' for mixed-valence
oxides, and which exhibits ferromagnetism,
might be applicable to explain ferromagnetism
in transition metals. This is a lattice of well-
separated atoms, identical except that some have
x d electrons and others x+ T, where 1 x 4.
For more than half-filled d shells where 5 ~ x
~ 8, exactly the same treatment can be extended
by substituting "holes" for "electrons, " so that
the model is valid for cases with more than one
d electron (or d hole) per atom. It is further as-
sumed that x electrons at each atomic site are
coupled according to Hund's rule to yield the spin

X= Q es~Cs~ C~t& 2'cTQ 0's Ss+IQN~ )Ns )&
R,B',a R R

of maximum multiplicity, S. If an additional elec-
tron, called a Zener electron, appears at an
atomic site 8, then the electron spin 0„ is cou-
pled with the localized spin S~ according to
Hund's rule 2Jv~ Ss, yielding the state S+—,

' or
S- —,', depending upon the relative orientation of
the two spins.

The interaction energy calculated by Anderson
and Hasegawa' from a system. of two atoms shar-
ing one Zener electron always favors ferromag-
netism, but their conclusion is somewhat mis-
leading. If one more Zener electron is added,
each atom will carry a single electron forming
the states with S+—,

' and the interaction between
the atoms disappears. Hence the interaction en-
ergy obviously depends on the density of Zener
electrons. In a solid, an antiferromagnetic state
might become stable, rather than the ferromag-
netic state.

In this Letter, we shall show that the model
described above yields a new mechanism for
spin-polarized split bands responsible for ferro-
magnetism. To demonstrate it, we shall calcu-
late the Green's function of the lattice. The
Hamiltonian is given by'

where e»=0 and Nz, =C„, Cz, . To reduce the chances of finding two Zener electrons with opposite
spins at the same atomic site, we have added the strong intra-atomic repulsive interaction IQ„N„i
xNs ~ with I= 5-10 eV, which is dominant compared to the Hund's-rule splitting J'(2S+ 1) of the order
of 1-2 eV. The bandwidth is supposed to be much smaller than I and rather comparable to Z(2S+1).

The form of the Hund's-rule interaction appears to be the same as the s-d interaction, and x elec-
trons at an atomic site behave as if they are localized, even though they are the same type of d elec-
trons as Zener electrons. The condition that atoms with fewer than x electrons become energetically
unfavorable and do not appear has introduced this apparent constraint on the hopping motion of the
electrons.

In a conventional problem of the s-d interaction, the conduction band is wide compared to the s-d
interaction J and hence J is treated as a perturbation. Edwards has calculated the interaction J clas-
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sically so that ferromagnetism is always favored as long as J remains positive. To eliminate this dif-
ficulty he introduces, rather arbitrarily, an effective interaction J,ff which can become negative. In
this paper the Hund's-rule splitting, being comparable to the hopping matrix elements e», of d elec-
txons, cannot be regarded as a small perturbation or as a classical coupling. In particular, to pre-
serve its atomic nature rigorously, we shall treat it together with the intra-atomic interaction term
in the manner in which Hubbard calculated narrow bands.

The one-particle double-time Green's function

&(C..; C..'» = &«..~.;&';c~.'&&+&«..~.;&»;c..'&&,

may be calculated by the equation of motion:

(E- 61)((C,N;&'»; C~, t&&= (2»r) '~'5 „,yr;&'»&+@~, e „„((C „,~,-«'» ~ C~
—«(y.c„.& .-f'&8„.+C„.-x„.«'ls„; c,.t »

7 (&)+»p(»«E+((c»«acBo c»«"or ct'a
-e .„((c,.c,.-'c,.-;c . »), (2)

where Nz, ~ ~=Nz„Nz ~ ~=I-N~, and o is the opposite of spin 0; The equation for the Green's func-
tion, which appears in the third term on the right-hand side of E«1. (2), is

(E+q&,
»
J- u)((q.c,.x„.-f'»8,.+c,.-x„.«'»8„; c„,.'»

=(») "'4~ (r.(&s."8»«-.&+r~.» &Cs.-c . 8 .&)+Z -~ -((X.c -.& '8,
+c„„.-x,.«'»s„„c,,.'» —«&c„.x„.-«'»s'; c„,.t» ~ ~ ~ .

Here, y = I and 8~, =8„ for o=&, and y = —I and S~, =S~+ for 0= &, respectively; y&,&
=+ I; 0= I for

(a) =(+) and 5= 0 for (+) = (-); and + ~ ~ ~ is a term similar to the last term on the right-hand side of E«l.
(2). Since 8' is a constant of motion, it can be replaced by its eigenvalue 8(8+1).

In the atomic limit, where the lattice parameter is infinite and &~~= 0, the above equations can be
solved exacgly, yielding the result

« ..; ..'»=',","'(-'. '-), (4)

S+y~M+ I I —n~ 8- y~M 1 —ng S+y~M e~ 8--y M+ 1 n~
28+1 E+JS 2S+1 E- Z(8+1) 2S+1 E I+J(8+1)-2S+1 E-I—JS'

and»», =—(pf,&. The expression for 1/hE is obtained from E«l. (5) by replacing the numerators by
+(Cz-,c~, 8~ &—= T. T will be small compared to 8 and will vanish when the localized spin 5~ and the
electron spin a„are parallel, that is, where y, M=S.

The above result shows that if a single Zener electxon appears at an atomic site and its spin o„and
the localized spin Sz are parallel, they form the state 8+2 with energy —JS. If they are not parallel,
however, the probability of finding the state 8+2 will be reduced to A,o=(8+y, M+1- T)/(28+1), and
there will be a probability A, '= (S-y, M+ T)/(28+1) of finding the state S- —,

' with energy J(2S+1).
Hence the fixst XA.,' Zener electrons will occupy the energy level E,= —JS, each forming the state S
+ —,

' at an atomic site; the next NA, ' electrons occupy the level E,= J(8+1), creating the state 8 —~ at
the remaining atomic sites. After every atom is filled with a single Zener electron, the next N(8
+y, M+T)/(28+1) electrons occupy the level E,=f J(8+1), and -the last N(8 —y M+1 —T)/(28+1)
electrons occupy the level 84=I+JS. %hen v~ and the S~ are all parallel, the first X electrons go to
level E„but if cr~ and the S„are all antiparallel and y, M= —S, only a small number of electrons can
occupy E, and the majority of the first N electrons go to E„and so on. If the relative orientations of
spins a„and S~ are random and if y M =0, each level accepts roughly 2N electrons and the levels will
be filled fxom the bottom. These are known results in atomic spectra.

At finite lattice constants, E«ls. (2) and (3) may be solved, provided that on the right-hand sides of
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Egs. (2) and (3) we decouple the Green's functions in the second terms and neglect the last terms in-
volving four C's.
These treatments correspond to Hubbard's simplest approximation and will reproduce the main fea-
ture of the Hubbard-type strong correlation in narrow bands. The result is

«Cg. ;C„-,. )&=-2- ~+ ~!Z5pgi 1 1 l E

where C~ and cq are the Fourier transforms of C„,and e„„., respectively. Since the origin of the

energy is fixed at the centroid of the band through the choice uzi ——0, roughly the first half of e~ will
be negative and the rest positive as long as the hopping matrix elements between distant atoms decay
exponentially.

If J =0, the resonant function Ebeeomes exactly the same as in the Hubbard case and the band splits
in two such that its lower band lies below I(1 —n~) and the upper band above I(1 -n ,). For -a finite J
(«I), each of the Hubbard split bands will again split into two. The Hubbard lower band splits such
that its lower sub-band remains below J(y, M+1). The splitting of the Hubbard upper band is also sim-
ilar, yielding four sub-bands. To derive these results, let the sum of the last two terms on the right-
hand side of Eq. (5) be denoted by 1/E, (E). When E=E„„,E,(E) will be a slowly varying function of
E and will be small since I dominates over JS as mell as over the bandwidth. The lower two sub-bands

E&,„of F e„-=0 m—ay then be calculated by F, (E) —ok, = 0, where 1/E, (E) denotes the first two terms
on the right-hand side of Eq. (5) and cI, '= ok[1 —ep/E, (E)] ' should be determined self-consistently.
This reduced equation is exactly the same form as the Hubbard quadratic equation, yielding the Hub-

bard-type split bands:

E, 2=- JS+2I J(2S+1)+n~ ~ ek'a{[J(28+1)+n;f ck']2 —4noi ~ek'J(28+1)A, OP' .
The same treatment ean be extended to the Hubbard upper band.

The Green's function is then written in the form

oqg, A,n; A,n; A,u; An; )
«C„-., C„-,. ))=

2 E E, ' E E 'E E 'E E )2 3 4

where 4 s give the weights of the solutions E,
In the narrow-band limit, A,.'s are equal to the
corresponding coefficients in Eg. (5), that is,
A g A y etc. As the bandwidth ine reas es, how-

ever, the values of A, 's deviate from A,."s and
become k dependent since A, = [A, 'J(2S+ 1) —E,]/
(E2 —E,), A, = [E2 —A,OJ(28+ 1)]/(E, —E,), etc. ;
but we find that the deviation is normally small
as long as the bandwidth is smaller than J(28+ 1).
As the bandwidth becomes wider and E,=A, 'J(2S
+1), we find A, =0 and A, =l even if A, '»A, '
and vice versa. However, this happens only for
a small number of electrons having E, =A,'J(2S'
+ 1), etc. For the majority of states k, there-
fore, the conclusion obtained for the atomic limit
will persist and the weight of the sub-bands will
depend on the relative orientations of the elec-
tron spin o~ and the localized spin S~.

Let us consider, for simplicity, cases with
less than one gener electron per atom and dis-
cuss the two sub-bands coming from the Hubbard
lower band. Suppose that the localized spins S„
are al.igaed ferromagnetically along the z axis.
For the spin-up Zener electrons, the weight of
the lower sub-band mill be dominant and the up-

! per sub-band accepts only a small number of
electrons. For the spin-down Zener electrons,
the trend is reversed. As long as the number of
Zener electrons, nN, is small, then most of
them will occupy the spin-up lower sub-band,
enhancing the magnetization already created by
the localized spins S„. The energy spectra for
the spin-up lower sub-band calculated by Eq. (7)
are written approximately as I', = —JS+n&~ ~c~,
where the spin-down sub-band is nearly empty
and n&~ ~=1. Since the lower half of && is nega-
tive, the total energy of the lattice will then be
reduced by the optimum amount by the kinetic
energy.

In case the localized spins S are randomly
oriented, the weights of the lower and upper sub-
bands for both spin-up and spin-down Zener elec-
trons will become equal. The energy spectra for
the lower sub-bands for both spins may be ex-
panded as Z, =-ZS+en-' &e-,, + ., where +s-,'
and n —,~ ~ = 1 —&n. Hence, nK electrons mill fill
the spin-up and spin-down lower sub-bands
equally, and the kinetic energy reduction of the
lattice will be less than one half that of the fer-
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romagnetic lattice. Thus the present model
favors ferromagnetism when the density of Zener
electrons is low. If the density of Zener elec-
trons increases and both the lower and upper sub-
bands are filled, that is, the case of one electron
per atom, the energy difference between the fer-
romagnetic and nonmagnetic lattices disappears.
Then a simple extension of our previous calcula-
tion' will lead to the conclusion that an antiferro-
magnetic sublattice structure yields a lower en-
ergy, illustrating the intricate dependence of
magnetic ordering in the present model on the
density of electrons.

The present model suggests that Hund's-rule
coupling, rather than the Hartree-Fock field, is
the key mechanism for the spin-polarized split-
ting of bands responsible for ferromagnetism in
transition metals. The Hartree-Fock splitting
assumed in the band theory of ferromagnetism is
believed to be suppressed when the Wigner-type
correlations are included, while the present
mechanism is exact in the atomic limit.

Ferromagnetic materials such as Fe and Co
have more than one Sd hole per atom and the

Hund's-rule coupling must play an important role
in the magnetic properties as discussed here.
It is widely speculated that 3d configurations in
Ni are of crucial importance for its stability,
suggesting that the present theory is also appli-
cable to the ferromagnetism of Ni.
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A coincidence study of three-body breakup of the He+P and the d+d system has been
made with the multidetector system BOL at 69-MeV He energy and 26-MeV deuteron
energy. Strong contributions from quasi two-body reactions (final-state interaction and
quasifree scattering) are found. The Watson-Migdal theory and the plane-wave impulse
approximation model do not consistently explain the data. The discrepancies are partic-
ularly striking where different two-body mechanisms overlap.

The crucial feature of multiparticle nuclear re-
actions is the complicated dependence of the dif-
ferential cross section on several kinematic vari-
ables, a major challenge to contemporary experi-
mental techniques. In single-counter experiments,
the cross section is implicitly integrated over a
large part of the available phase space. Often
this integration masks even prominent character-
istics of the contributing reaction mechanisms.
In more time-consuming, kinematically complete

coincidence measurements, different processes
can be optimally identified though they usually
cover only a small region of the total phase space.
The multidetector system BOL' allows one to in-
vestigate a large part of phase space, yet in a
kinematically complete way. Thus an overall
view of the reaction is obtained and, in addition,
any desired detail can be investigated. Normal
and deuterated polyethylene targets (= 2 mg/cm')
were bombarded by 69-MeV 'He particles and 26-
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