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curve in Figs. 2(f) and 3(f) is the net potential
jump ¢, as a function of M.

These equations predict an upper critical Mach
number at which », =7, and above which one does
not have a shock but a pure piston. In the mag-
netic case this critical Mach number is 3.18 and
in the electrostatic case 6.5. These equations
implicitly assume that the peak potential in the
shock front is just large enough to reflect ions to
provide the necessary dissipation. Thus they
have solutions with #, finite down to M =1. Solu-
tions with #n,=0 are not possible except at M =1.
However from Figs. 2(f) and 3(f) we see that as
M ¢ approaches the lower critical Mach number,
nonsteady solitary-wave solutions are possible
with peak potentials too small to reflect ions.
The simulations, particularly for the magnetic
case, illustrate a distinct transition from soli-
tary-wave-like to shocklike behavior right at the
lower critical Mach number. For moderately
high Mach numbers good agreement is seen with
the shock-wave theory where the dissipation due
to trapped and reflected ions becomes sufficiently
strong to produce steady-state behavior. A finite
fraction of ions are reflected in the limit of T';

— 0 because of regular fluctuations in the shock
front. For this reason these solutions cannot be
obtained by the stationary quasipotential method.®
In the electrostatic case, if an isothermal elec-
tron equation of state is used, the upper critical
Mach number drops to 1.82, which perhaps ex-

plains why laboratory electrostatic shocks” in
which the electrons are maintained nearly iso-
thermal do not approach as large a Mach number
as obtained in the simulations. Above the upper
critical Mach number (and prior to shock forma-
tion in the electrostatic case) the simulations
show a pure piston whose properties are given by
n,=n; and Eq. (9). Again the system is closed by
using the appropriate equation of state.
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Ryogo Hirota
RCA Research Labovatovies, Tokyo Intevnational 100-31, Japan
(Received 17 September 1971)

An exact solution has been obtained for the Korteweg—de Vries equation for the case of
multiple collisions of N solitons with different amplitudes.

An exact solution has been obtained for the Korteweg—de Vries equation,
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with the associated boundary condition u(x, f) =0 at x =+ «, The solution is valid for the case of multi-
ple collisions of N solitons (N being an arbitrary but finite integer) with different amplitudes and can

be written
32
ulx, ) =- 2-&7 Inflx, #),
flx, B =det| M|,
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where the N XN matrix M has the form

2(P_P.)1/2

Mij(xst):ﬁij+—?1?;)j_eXp[%(‘gi"“gj)]a (4)
Ei=Pix = Qit-£;° (5)
Q;=P7, (6)

and where P; and £;° are arbitrary constants which determine the amplitude and phase, respectively,
of the ith soliton. The P; are assumed to be all different. It should be noted that the functional form
of u in Eq. (2) is the same as that of Kay and Moses’s expression for the reflectionless potential for
the one-dimensional Schrédinger equation, 2

Substituting the solution into the original equation to demonstrate its validity gives the following
equation for flx, #):

ffxt_ftfx+fxxxxf_ 4fxxxfx+3fx12:07 (7)

where subscript notation has been used to indicate the partial differentiation. We rewrite f in the fol-
lowing form? to prove Eq. (7):

N
f=1+ E ZC‘; a(il’ 1:2, M) in) exP(gil"'giz"'”' +gi,,), (8)
n=1yCy
(n)
a(ili 7:27 ey 7’n) H a(ikv il)r (9)
R<1
a(ik,iz):(Pik—Pi,)Z/(Pik“'Pi,)z, (10)

where ,C, indicates summation over all possible combinations of n elements taken from N, and () in-
dicates the product of all possible combinations of the » elements (with the specified condition 2<!, as
indicated).

Substitution of this expression for f into Eq. (7) shows that f is a solution of Eq. (7) provided that the
following relation holds:

n

Z Ea(ilv izv Y Z.l)a(il'ﬁ'lv Y zn)g(— il) —i2, vt —il’ il+1’ te " in)= 0) (11)

1=0 ,C;
n=1,2,+++ N,

where
g(_il’_iz’ "',_il’il*h “'7in)=(—Pi1_Pi2_ tte _Pi,+Pi(1¢1) T +Pin)
XU=Pi=Pyy= e+ =Py +Py 4o +Py )
(=P =P = =Py "4+ Py ) 4 4P ) (12)

and a(i,) =a(iy) =1.
For a given value of n, Eq. (11) can be transformed into the following identity:
E b(OIPI, 0, P, °-°,0"Pn)g(01P1, 0,P,, "',O’nP”)=0, (13)

01s0g,*** ,0p=41

where
(n) .
b(olPl,()sz,---,cnPn)= H(Okpk_olpl) ’ (14)
k<1

the summation being over all possible combinations of ¢,=+1, 0,=+1, --+ 0, =21,

The identity can be proved by mathematical induction. Let the left-hand side of Eq. (13) be repre-
sented by D(P,, P,, +++, P,), which is found to have the following properties: (i) D is a symmetric,
homogeneous polynomial; (ii) D is an even function of P,, P,, « ++, P,; (iii) if P,=P,, then

n
D(Plvpz, --',P")=2(2Pk)2D(P1,P2, Pty Priayy "y Prayy Py, “"Pn) H'(sz_sz)z’

m=1
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where the prime indicates that the product is taken over m =1 to n, except for m=~k and m =1.
The identity is easily verified for =1 and 2. Now, assume that the identity holds for » - 2. Then,
relying on properties (i), (ii), and (iii), it is seen that D can be factored by a symmetric homogeneous

polynomial

) 2 2\2
H(Pk "Px)
k<1

of degree 2n(n — 1). On the other hand, Eq. (13) shows the degree of D to be n(n - 1) +4. Hence, D

must be zero for #, and the identity holds.
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The energy loss of ions channeled through the {111) Si channel is studied in the energy
range 0.9 to 5.0 MeV. The energy dependence of the ratio between channeling and ran-
dom stopping power above 3 MeV shows an increase which can be interpreted in terms
of core-electron excitation. The velocity dependence of the channeling stopping power

is also studied.

In recent years many experiments have been
performed on the energy loss of light ions chan-
neled through semiconductor single crystals in
the energy range above 3 MeV.!"® The results
have been discussed in terms of localized and
nonlocalized contributions to the electronic stop-
ping power.2 Appleton, Erginsoy, and Gibson'
used their results to extract the local density of
valence electrons, sampled by the well-channeled
protons along the Si (110) axial direction. The
value they obtained in this way was about 4.

In the present work we extend the energy-loss
measurements to the lower energy region, using
H*, DY, and *He* ions. Our aim is to check
(a) the channeling energy loss in the energy range
where the incident ions interact only with the
weakly bounded valence electrons; (b) the energy
threshold for the core-electron contribution to
the stopping power; (c) the mass dependence of
the channeling energy loss at low energy; and
(d) the energy dependence of the ratio between
channeling and random stopping power. In this
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Letter we present some preliminary results con-
cerning the Si (111) axial direction.

The incident beam, obtained from the 5.5-MeV
Van de Graaff accelerator of Laboratori Nazion-
ali Legnaro, was collimated by annular collima-
tors of various sizes and arranged at given dis-
tances. The minimum hole was 0.3 mm in dia-
meter and the maximum divergence of the beam
was always kept better than 0.1°, The thickness
of the targets ranged from 1.5 to 32 um. The
thickness of the samples was carefully checked
by the energy loss of the transmitted particles in
random conditions, using the tabulated stopping
power.*

In the case of *He ions, corrections to these
values, due to a reduction in the effective charge
of the particles, could also be considered, as
suggested by Bloom and Sauter.® Since, however,
only a few experimental data are available at
present on this point, we preferred to follow
Williamson’s treatment which, in addition, yield-
ed a measured value for the thickness of the



