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'The transverse-momentum distributions are quite
similar for small pt~ in the different data samples.

For comparison, corresponding values in Reaction
(3) are 0.396+ 0.013, 0.302+ 0.009, and 0.319+0.015,
respectively, at 8, 18.5, and 24.8 GeV/c. The errors
here and in the figures include only statistical errors
on the distributions and on the cross-section determi-
nations. Some allowance should be made for systemat-
ic uncertainties of approximately a few percent in the
evaluations of cross sections, where somewhat differ-
ent procedures (see Ref. 14) had to be used with the
different samples.

The shapes differ at larger P „, the 18.5-GeV/c dis-
tribution faning less rapidly with increasing p~~ than the

7-GeV/c distribution.
The fit to the data for P~i &0, where target fragmen-

tation is most surely expected to dominate, has a g
probability of 8.2% with no allowance for systematic
effects such as differences in normalization of cross
sections.

As p~~ is varied, systematic effects can be observed
in Figs. 3 and 4 which indicate the limitations of the
Regge model in its present form. For higher incident
momenta the particle densities decrease less rapidly
as pI~ increases. This is consistent with the presence
of significant contributions at p~~ 0.6 Ge V/ cfrom
sources other than target fragmentation which become
larger at higher energies.
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An alternative to Dirac's factorization of the Klein-Gordon equation is developed; the
resulting two-component, m &0 equations are proved Poincar5 invariant. The particles
interact chirally and minimally with the electromagnetic field (g=2). Our equations
yield factorizations of Kramers s equations and a conserved chiral current (without
y5 projection) to implement in a natural way the Feynman-Ge11-Mann approach to weak
interactions. Besides possessing sharp chirality, the particles possess a new dichotom-
ic quantum number.

The theory of spin-& particles was constructed
by Dirac by means of a factorization of the Klein-
Gordon equation over the field of four-component
spinors. signer's subsequent analysis of the
irreducible representations (irreps) of the Poin-
care group provided a secure general foundation
and extension of Dirac's construction. It is a
familiar result of this analysis that a two-com-
ponent spin-& irrep (particle) can be character-
ized only by sharp CI' and not I' or C separately.
The neutrinos (m= 0) provide a well-known phys-
ical example.

It is commonly believed that for mass m4 0
Dirac's construction is unique, and that, in

particular, a two-component particle having
m & 0 cannot possess a first-order Poincare-
invariant wave equation. We will show that this
belief is incorrect; we shall explicitly construct
Poincard-invariant first-order wave equations
for two-component massive charged particles,
characterized by chirality and a second new

quantum number.

Let us note that our construction in no way
contradicts Dirac's work. Dirac explicitly states
that the uniqueness of his construction hinged
on a fundamental assumption: that the matrices
entering the factorization are to be independent
of space time, that is-, they are to represent
independent nero degrees offreedom. This as-
sumption is omitted in our construction.

That the factorizing matrices now involve
space-time complicates the proof of invariance;
accordingly we first applied these equations to
an external Coulomb field2 which by singling
out a particular point and a particular Lorentz
fram" makes invariance questions irrelevant.
We found precisely the usual Dirac-Coulomb
levels, with this distinction: The new quantum
number splits the (degenerate) spectrum into
two nondegenerate spectra (omitting spatial de-
generacy).

The Feynman-Gell-Mann theory of the Fermi
interactions began from the iterated Dirac equa-
tion in the presence of arbitrary electromagnetic
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fields, that is,

(y 11+m)(y rl-m)q

=[II II+eo' (tp,E+B)-m2]g = 0

by q:
po —p~ —ma = [g~(po —g p)+m]

[n.(p. -o P)-m]. (5b)
where

y-=(p„p,o), II =- (p, —eA„p —eA).

%e may project onto states of sharp chirality
splitting Eq. (1) into the two (two-component)
equations first given by Kramers and by van der
Waerden, ' These equations are, for p, -+1,

[7I,(11,+p,o IT) ~m]@ =0. (7a)

To incorporate general electromagnetic fields
we use gauge invariance:

p, ao.p-ll, +o II =II".

The factorization given in (5b) implies the wave
equations (p, ——1)

(II rl'-m')y=O;

for p, ——1,

(2a)
The case p, -+1 is also allowed, hence (7a) is
true in general. For A„=O, we have

(11'll -m')q =O; (2b) [R,(p, +p,o"p)+ m]P = 0. (7b)

here

II = IIO + O'FI. (2c)

o'L+ iX-=-(a' I + I), S(X) =-

IX I j(X)+ p
(4)

The operator X is a two-component form of
Dirac's K quantum number; since the eigenval-
ues, X- ~, are the (+) integers excluding zero,
(4) is well defined. The operator j (X) has eigen-
values j= Ia'i —

&, and satisfies J -j(j+1).
The significance of the g, is that they obey

q;rt, =ie;»q, .. The operator r), has the special
significance that it is an explicit space time-
dependent form of the parity operator acting in
the particle configuration space This al.lows
a factorization of the KG equation,

(p,' —p~ —m') = (p, —o"p —7I,m)

x (po+o p+ gism). (5a)

To see this note that p, [=-i(s/Bt)] commutes with
f p, and with q„i seen(1) these operators have
no explicit time dependence, and (2) p, is a true
scalar operator (even parity). That the opera-
tors o'p and g~ anticommute can be shown di-
rectly, ' but results more simply from noting
that o'p is pseudoscalar. A more convenient
form of (5a) results if we multiply on both sides

Note that Eqs. (2a), 2(b) are distinguished by
chirality and are distinct only in the presence
of electromagnetic fields. The Klein-Gordon
(KG) equation is the field-free special case.

Let us introduce in the KG equation the two-
component space-time-dependent anticommuting
operators' defined by

g, —= o" r", g, =—iq, iI„VI,= (-)'~x~""S(X)

where

To prove that (7a) implies a factorization of
(2a), (2b), consider the product (p, -1) [g,(II,
+o'll)+m][q, (II+o"IT) —m]. First note that q,
commutes with eA, since A„ like p„ is a true
scalar, hence [g„llo] =0. The crucial step is
to show that [q» O'IT], = 0, or equivalently, [g»
8 A], =0. To verify this consider first a con-
stant magnetic field: A=-,'(Bxr), where B is
a constant axial vector. The odd-parity informa-
tion in A is now exp/icitly carried by r and 7I,
as a particle-space parity operator "sees" the
odd parity: [q» o & (Bx r)], = 0. By superposing
sufficiently many locally constant fields, and
using algebraic linearity, we obtain the general
case, i.e. , [q„o'A], =0 for a general polar vec-
tor A. To incorporate the general situation more
expediently, we extend the meaning of g, to in-
clude impticit parity information. Thus, q, has
henceforth the significance of a gene~ad parity
operator. '

We have thus factorized Kramers equation
for general electromagnetic fields; reintroduc-
ing p, shows that we have, in fact, a factoriza-
tion of Eq. (1) itself—a factorization which splits
into chiral two-component wave equations.

The four cases for Eq. (7) each possess a con-
gegged current:

j—= (y [II,p, (x] y), s j=0.

The proof of Poincare invariance for (7) is
rather delicate. The difficulty stems from two
sources: the space-time dependence of the q's
and the discreteness of reQection operators.

For Lorentz invariance we can restrict atten-
tion to proving the invariance of q~(p, + o'p) for
Lorentz boosts. The boosts are generated by
the polar vector operator K-=i(N+ ,'o), where-
N -=1V1„„M„„=e „„Bx p s. A finite boost is gen-

i168
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8 8':—8+58,
56=[H K, 6],

(10)

and the latter commutator is not necessarily
the same as 5v [K, 8], despite the fact that 5v
is a parametric constant vector. The peculiar
phenomena inherent to (7) are associated with
a new phenomenon: rapid fluctuations t =m '
between positive- and negative-parity states. j

Although Eq. (Vb) does indeed possess a rest
frame, one must be careful to interpret this
concept properly, since the zest frame is qual-
itatively distinct from a general frame in the
followirg ways: (1) In every frame, except the
rest frame, p fluctuates and parity is not sharp;
(2) half of the solutions to (7b) vanish in the rest

crated by V-=(iv K). Note that v is a constant
polar vector parametrizing the boost velocity.
Hence,

q (p, +o"p)—:g~P&o„- V '(g, p„a~)V.

Since [a', N] =0, we have V=UW = N'U, where
U=exp(- v N), IV =exp(--,'v o). Observe now
that v N has even parity; hence U commutes uith
qs and generates on p the finite transformation
p„-a„„p,. By contrast, the odd-parity operator
v (I anticommutes with g„hence 8' 'g3 7j3$
Precisely as required, then, the (Y„ transform
as 8'a„R' =a„,a, . By definition, a„,a„,= 0„;
Lorentz invariance follows.

Accordingly we have shown that in (7) the canimal

four-vectors, g, (II, p,cr), enter in the scalar
product with p „; moreover by comparison with
the current, (8), we see that the analog to the
Pauli adjoint p is here +=pt7I~. (Using this
inner product one can verify invariance in an
alternative way. )

Consider the translational invariance of (7).
Again we consider finite transformations, the
finite space-time displacement operator being
D= exp(id p). We need consider only the be-
havior of g3. Note now that d p has in every
case even parity; clearly q, commutes and the
equations are Poincare invariant.

1To appreciate the delicate nature of these
arguments note that the infinitesimal generator
of spatial displacements, p, does not commute
with (Vb) and hence is not constant under the
Hamiltonian. Yet the equations are displacement
invariant ~ This "paradox" was avoided by con-
sidering finite transformations; more generally
we see the necessity of defining infinitesimal
boosts, say, by

frame; (3) rest-frame solutions properly belong
the the space of KG solutions. To avoid any pos-
sible inconsistency one may imagine p to con-
tain an infinitesimal imaginary part ie, which
then regularizes the system. [More physically
one may imagine (for continuum states) an infini-
tesimally weak Coulomb field —which accom-
plishes the same end. ]

FolIowing convention, we must now designate
the new quantum number contained in (Va). To
rewrite (Va) we first define a dichotomic opera-
tor'.

q
= m 'q (II, +p,o"II), (q)'=ll.

Equation (Va) assumes the form qp-+p, (U
we wish to include the neutrino we can extend
this operator to three values by defining stigma
—0 in this case. )

Concfuditlg remarks. (a) It—has been shown'
that Kramers equation has the remarkable prop-
erty of allowing only g = 2. This property clearly
accords with (Va), where one observes that there
simply are no operators —analogous to [y„,y„]—available to form an invariant from I' „,. Thus, ,
this system is inherently characterized by min-
imal electxodynami cs and correspondingly the
g factor is exactly tuo. It seems reasonable in
view of this fact to designate (7) as a sort of
"primitive" lepton equation, describing four
types of m 401eptons (p, -+ I, &-+1) and two

types of m = 0 leptons (p, —+ 1). (b) It will be
observed that we have deduced the existence of
"leptonic" conserved chill currents, Eq. (8),
which, following Feynman and Gell-Mann, should
be the appropriate basis for a current-current
theory of the Fermi interaction. (c) The physical
massive leptons have (g —2)/2 = n/2n. Assuming
that the electron and muon are almost pure
"leptons, " we conclude that any chirality break-
ing in purely leptonic decays is of order n/2m,
i.e. , I V/Ai- 1= n/2n in muon decay.
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A detailed discussion (and original references) may
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be found in L. C. Biedenharn and P. J. Brussaard,
Coulomb ExcitaNon (Oxford U. Press, Oxford, England,
&965).

This step was in error in Ref. 2; we wrongly argued
that &r A was a pseudoscalar under J=L+o/2, hence
"q&"=S+) anticommutes. In fact, a'A is apolar vector
under J and to achieve anticommutation we must re-

define qs as given in (3) . The use of the incorrect op-
erator for g3 is responsible for our statement in Ref.
2 that Lorentz invarianee fails.

VThe Greek letter & is called "stigma" [see O. Neuge-
bauer, The Exgct Sciences in Antiquity {Princeton U.
Press, Princeton, N. J., 1952), pp. 10 and 24], with
the quantum number being a distinguishing "mark. "


