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A variational method is constructed for the Feshbach equations for scattering. An ex-
ample is carried out on the S-wave electron-hydrogen system. It is shown that fast con-
vergence of the phase shift can be obtained throughout the energy range of interest in-
cluding the resonance region. No anomalous singularities have been encountered.

In atomic and molecular problems, the Ray-
leigh-Ritz variational method is extremely useful
in treating bound-state problems. Its counterpart
in scattering problems, namely, Kohn's varia-
tional method, has, however, been relatively
less successful. This results partly from the dif-
ficulties in handling the anomalous singularities
and partly from treating resonances that one often
encounters in actual applications. These difficul-
ties are illustrated in the well-known work of
Schwartz' for elastic scattering of electrons by
hydrogen atoms. Recently, several alternative
variational methods have been developed to rem-
edy these difficulties. ' ' In this Letter, we pro-
pose an alternative version of Kohn's variational
method which is free of the above difficulties,
and we show that this new method is capable of
providing high accuracy, using electron-hydrogen
scattering as an example.

The fundamental difference of the present ap-
proach from other recently proposed methods
lies in the fact that we start with the Feshbach
equation' instead of the Schrodinger equation.
The Feshbach equation is, of course, formally
equivalent to the Schrodinger equation. By con-
struction, the Feshbach equation, however, has
the resonance structure built into its effective
Hamiltonian. It is this feature which removes

the difficulties encountered in the conventional
Kohn variational method and permits a simple de-
scription of resonances.

For convenience we now specifically consider
the scattering of an electron by atoms. The state
function for the scattering system may be sepa-
rated into the open- and closed-channel compo-
nents. If P and Q are the projection operators
which project onto the open- and closed-channel
subspaces, respectively, the Schrodinger equa-
tion may be written as'

(PHP E)P4 = ——PHQ0,

(QHQ -E)QC = —QHP4',

where H is the Hamiltonian. Equations (la) and

(1b) can be solved to give the Feshbach equation,

By construction of P we have

p+„

where r denotes the coordinates of the outgoing
electron.

Now, on applying Kohn's variational principle
to the Feshbach equation, we obtain the variation-
al functional

jp tan~g p+ pgp+ pg pp g p+ —0

where k is the momentum of the outgoing electron and the normalization of 4 is taken such that the out-

going electron wave function approaches

[sin(hr + 2ln) + tan0 cos(hr + 2ln)]/r (4)

asymptotically.
A functional can be constructed for Eq. (1b), namely,

&((Q+IQHQ -&IQ@&+(Q+IQHPIP+&+&P@IPHQI Q+&) = o.
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Hence if we assume Q4'=Q„C„p„, where p„ is a set of basis functions, with the C„as undetermined
coefficients, Eq. (2) can be rewritten as

~(~ tan ,e —-&P~~ PHP+g„. PHQ~~„&~„. &~-.[QHP Z-~P~&) = O,

where A„ is the element of the inverse of the matrix (@„~QHQ -E~p &. Although this is mathemati-
cally equivalent to both the conventional Kohn method and various modified Kohn methods, in the pres-
ent formulation the orthogonality between the P space and the Q space is preserved A. trial basis func-
tion used in the present formulation should therefore be either in Q space or in P space. This will

help to remove the anomalous singularity. The closed-channel resonances arise naturally when E ap-
proaches 0116 of tile 61geIIVRlues of QHQ. In RI1 BRI'1161' wol'k, we used fol' QC tile elge11function of QHQ,

This is different from the Q4' calculated from Eq. (5). The present method gives faster convergence
for phase-shift calculations.

A numerical example is carried out for electron-hydrogen S-wave scattering. We assume

Q4'=QQC;(x, "'I, I exp[- (nr, + ps, )]+1, I r, "& exp[- (nr, + pr, )]jP, (cos8»),

P+=y(r, )e "I/v 7I+ y(r, )e "'/Wir,

where

P =I y,.(l)& &q,.(i)l +
I y,.(2)& &q,.(2)I- ly, .(l)q, .(&)& &q,.(i)q,.(2)l,

and Q = l -P. The function y(r, ) assumes the form
I1'

y(I ) = g d;1'e '"+ [sin(ar)+tane cos(ur)],
/=0

where t, n, and P are the nonlinear parameters;
and g is the ground state for hydrogen. Equation
(7) is similar to those used by O'Malley and Gelt-
man, ' but here we use fewer nonlinear parame-
tel'8 Rnd our elgellvRlues fox' QHQ Rx'6 collsldel'-
ably lower.

In computation, several interesting features
are observed:

(a) With a suitable choice of t, 8 usually con-
verges to three or four significant figures by us-

ing five terms of d,-'s. If ten terms are included,
8 usually converges to five significant figures.
More terms are needed near the resonance. The
phase shift does converge in this energy region.

(b) Although only separable wave functions are
used for the closed-channel component, the con-
vergence is very impressive. This suggests the
effectiveness of the variational method. For ex-
ample, at 4 =O.l a.u. with an arbitrary choice of

TABLE I. 8-state phase shift for elastic electron-hydrogen st:attering.

This work This work

0.01
0.04
0.09
0.16
0.25
0.36
0.49
0.64

0.6790
0.7208
0.74

2.553
2.067
1.696
1.415
1.202
1.041
0.930
0.886

1.596

0.817
0.773

1s-2s-2p +corr
0.9205
0.762
0.8376

2.550
2.060
1.690
1.408
1.192
1.032
0.921
0.877

0.9161
0.753
0.822

2.9388
2.7171
2.4996
2.2938
2.1046
1.9329
1.7797
1.643

2.9355
2.7153

1.767
1.633

1s-2s-2P +col r
1.6158
1.5828
1.5724

2.9383
2.7172
2.4994
2.2937
2.1042
1.9323
1.7787
1.6431

1.6132
1,5829
1.5701

Se Ref. 2. See Ref. 9.
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TABLE H. Besonance 8 states for elastic electron-hydrogen scattering. &„ is
the eigenvalue of QHQ, E„ is the resonance position, and 4 =E„-&„.

(Ry)
&n

(By)
%idth

(eV)

1 —0.148 766
-0 148779

—0.125 992 4
-0 1260083'
—0.125018 6
—0.127 1077
—0.127 108
—0.125 1101
-0 125092
—0.125 000 6

—0.3.48 894
—O.14865'

—0.126 002 3
—9.12595'
—0.1250194
—0.12V 102 9
—o.126ee23"
—0.125 108 9

-0.99x].0 5

-8.0 xlo '
+ 4.8 x10 8

+3 xlo '

8

4.11x10 '
4.75x10 2b

0.043 +0.006
2.65x10 3

2.19x10 Sb

6.22xlo ~

3.1 x].0 5

2.06x10 ~

2.4 xlo 8

2.4 x10 '

See Ref. 10. CSee Ref. 15.

o = ().6, p = (- 2E —n')' ~', we obtain 8 = 2.53»ad
by using a four-term s-wave, nine-term p-wave
trial function. This is a 77% improvement over
the Is-2s-2P close-coupling calculation. '" The
latter consumes much more computer time.
%hen the d wave as well as more terms are in-
cluded in Q4', we are able to improve the Is-2s-
2P close-coupling result by 90—96% for the sin-
glet S state. For the txiplet S state our results
differ, usually in the fifth place, from the most
accurate results of Schwartz (see Table I).

(c) We have used Eq. (7) to calculate the eigen-
values of QHQ. In both the singlet and the triplet
cases, we found at least three resonances below

the n=2 threshold. The existence of these series
of resonances has been discussed in the litera-
ture. ""It is interesting to note that for the sin-
glet case the shift (see Table II) is negative and

for the triplet case the shift is positive, and it de-
creases rapidly with increasing width. Further-
more, in the triplet case we also obtained lower
eigenvalues" "than those of Bhatia, Temkin,
and Perkins. " Although the differ ences are very
small, it is perhaps sufficient to demonstrate
that for these resonances the inclusion of r» in
the trial function will not improve the results sig-
nificantly. From the singlet scattering calcula-
tion, it appears that to include Hylleraas coordi-
nates in the trial function may improve the con-
vergence slightly, but the improvement is consid-

. erably less than one would usually assume. The

full details of this calculation will be presented in
a f0rthcomlng paper,
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