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nance model, for they undoubtedly have some-
thing to do with the Pomeranchuk singularity.
Although the latter is specifically left out of the
dual-resonance model, its effect may be partly
included, for unitarity is used in arriving at (6).
We have, however, no interpretation to offer at
present.

Our findings bear on some recent speculations
by Chen and Harte" and by Berman and Jacob. '
They extended the Wu- Yang conjecture"

o,~,p
= ((x„)'i'

to the inclusive reaction pp -p+ anything, and
suggested that in part of the quasielastic region,
namely, that for which Itf /t remains fixed as r

1f

d'o/dqdQ = (o„)"'R,

where R is a slowly varying function related to
the cross section for e+p -e +anything. This
conjecture is not borne out by our result, which
resembles more closely (i5) with (o,i) "' replaced
by Oei.
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The longitudinal momentum distribution of the final detected proton in pp inclusive
reactions is flat for energies ranging from 20 to 1500 GeV. %e show how this can be un-
derstood in the diffractive model, and how this information provides a way for calculating
the average multiplicity and the pion longitudinal momentum distributions in pp inclusive
reactions. No arbitrary parameter is used. The agreement with experiment is remarka-
bly good.

Proton spectrum It has .—been known for some
time that up to 30 GeV/c, the c.m. longitudinal
momentum distribution da/dp„* of the proton in
the inclusive reaction P+P-P+ anything is inde-
pendent of pii". ' ' It is dramatically different
from the pion spectra and has always been some-
what of a mystery. Recent results' from the
CERN intersecting-storage-rings experiment
show that this property persists up to 1500 GeV/
c; moreover, the height of the proton spectrum

is consistent with the invariant distribution being
"limiting. "' We show below how these character-
istics can be understood within the framework of
the diffractive model in which the multiparticle
production amplitude can be described by the ex-
change of a single Pomeranchukon between two
clusters. "

The mean transverse momentum (k i')' ' of the
secondary pions in hadron-hadron collisions is
known to be not too sensitive to the nature of the
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(l)

(2)

where M is the mass of the proton. Let I' be the
incident c.m. momentum, and define the scaled
variable y, =P~~*/P. We are primarily interested
in the kinematical region where M; «P [as will
become evident in (7) belowj; thus, we may ap-
proximate q*=P. We then obtain from (l) and (2)

y, =M/M, (similarly y, =M/M, ).

Now, let n, denote the number of pions in the
(first) cluster. The proton being at rest in the

(3)

hadrons, to the number of prongs involved, to the
beam momentum, and to their own longitudinal
momenta. In the diffractive-excitation picture in
which each of the excited hadrons is assumed to
decay isotropically in its respective rest frame,
it is therefore suggestive that pions are emitted
with a definite average energy E that depends on
(&~2)' 2 but is independent of the number of pions
emitted, etc. Thus, for each co/lision the final
state can be thought of as forming two clusters
of pions although the collection of many events
does not have this form. For simplicity we shall
ignore here the production of strange particles
and antibaryons since their production cross sec-
tions are low. In the decay of the excited state
the proton should, on the average, form a "nucle-
us" for the pionic radiation; and hence, its rest
frame should coincide with the cluster frame.

With these assumptions we can obtain the c.m.
longitudinal momentum P „*of the proton by Lo-
rentz transformation. For given masses of the
two clusters My and M„ the c.m. momentum of
the clusters, q*, is fixed; from it the velocities
of the clusters (hence, of the protons) can be de-
termined. Thus, for the first cluster

cluster frame implies

M, =M+n~E,

which in conjunction with (3) yields

The flatness of the proton spectrum' implies

do/dy, =A, (6)

where A is independent of p, and only weakly de-
pendent on the incident energy. In terms of M„
(6) can be expressed as

do/dM, = —AM/M, '. (7)

We now see how (7) can be derived in the dif-
fractive model. The two clusters of particles are
produced, in Regge language, with the exchange
of the Pomeranchukon which in our model is a
fixed singularity at j = 1. ' ' Assuming that the
Pomeranchukon is factorizable, we need further
a knowledge of the behavior of the Pomeranchuk-
on-hadron amplitude at large values of the clus-
ter masses. Here we either assume on phenom-
enological ground that the triple-Pomeranchukon
coupling is weak" (consequently the f trajectory
dominates) or assert as a theoretical conjecture
that the notion of duality applies also to the Pom-
eranchukon-hadron "scattering" amplitude. In the
latter case the interpretation of the excited state
before its decay as a Regge recurrence of the in-
cident hadron implies that it is dual to the leading
non-Pomeranchukon Regge pole, i.e. , the f tra-
jectory. Furthermore, duality means that the
imaginary part of the forward Pomeranchukon-
hadron scattering amplitude behaves as 3f,. "~~ &,

i = 1, 2, even for nonasymptotic values of M;,
such as the typical resonance masses. With s de-
noting the square of the c.m. energy and —t the
square of the momentum transfer carried by the
Pomeranchukon, then in the limit s» (MPI, /M)'
we have

d'o , , s
(8)

Here P(t) has the exponential peak characteristic of diffraction. Setting o.'p(t) =1 and nz(0) = 2 in (8) we
obtain

do'/dM, ~M,

which agrees with (7). This explains the flatness of the proton spectrum. The validity of (8) for non-
asymptotic values of M; as suggested by duality implies that the spectrum is flat not only for small val-
ues of y; but also for most of the y; range (roughly up to M/M*, where M* is a typical resonance mass).
To understand the empirical fact that the flatness extends almost all the way to y; =1 would perhaps re-
quire a more refined version of our model. It is evident, however, that the simple picture described
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here has captured the essence of the mechanism.
gperage multiplicity. —The average pion multiplicity in pp collisions is

d g d 0'
(n) = (n, +n, )dn, dn, dn, dn, .

dnqdS2

The boundaries of integration will be taken to be n, +n, =1 (at least one pion must be produced in an in-
elastic event) and n, +n, = (Ws —2M)/E, the latter being the maximum number of pions that ean be pro-
duced with the available energy. Using (5) and (6), the integrals in (10) may be evaluated. Assuming
that the probability of finding charged pions is —, when the total pion charge is zero, and that protons
and neutrons occur equally frequently in the final states, the total charge multiplicity, including those
of the proton tracks is" (n,) = 3(2(n)+4). This leads to

(n,) = -;(1 - g+ g~/D),

ps=(1-2M/Is) i n(Ws/M-1) -(1 +2g) 'in(1+g '),
D =2[-M/0s —(M'/s) ln(lfs/M —1)+((/2(+1)+((/2(+1)'in(l+( ')].

where g(n, ;x) is the probability density (whose
integral over x is unity) of finding a pion with
longitudinal momentum xP in a clustex' of n, pions.
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FIG. 1. Average charge multiplicity as a function of
incident energy. Solid curve is the theoretical predic-
tion.

Asymptotically this grows as lns. Note that both
the slope and the height are completely deter-
mined by the proton mass M and the avexage pion
energy F. in the cluster frame. There axe no free
parameters. To get E =(kg, we average (k'+ Iz') '
over an isotropic Gaussian momentum distribu-
tion, exp(- 0'/(k ~')). Here and in the following
we take" (lz ~')' ' = 350 MeV/c; this yields" $ =M/
E =2.18. The prediction according to (11) is plot-
ted in Fig. 1 and compared with expeximental da-
ta." The agreement is good considexing that no
free parameter has been used.

Pzon spscft'zznz zn pp collzszons. —Let x = iz II+/P

be the pion c.m. longitudinal momentum scaled
by P. The differential cross section do'/dx is

de P do
n1g (n1, x ) dn1,

X

der cv
'~'

F (x) = x—= $A — (G, —)xGz), (15)

G, = —— 11 —erf(Wo. [(g + n, )x —1])j,

G, = J exp[- n (z —1)']dz/z.

Again we note that apart from normalization F(x)
is completely determined by M, E, and n, without
any free parameters. We have computed F(x) for
w' (n, =1) and 1I (n, =2) spectra which are shown

by solid lines in Fig. 2. The curves are normal-
ized to unity at &=0.2, and the data''" with sim-
ilar normalization are shown for comparison of
the x dependences. Where our model is reliable,
i.e. , x(0.5, the agreement is remarkably good.

~ Since the invariant pion spectrum at existing ma-
chine energies is limiting already, ' we shall cal-
culate (12) at infinite energy. The upper limit of
the integral is then ~; the lower limit eo is 1 or
2 according to whether the spectrum is that of m'

or w . The probability functiong(n, ;x) describing
an isotropic decay. is assumed to be the Gaussian
d1strlbutlon exp(-0 /(lz ~ )) 111 t11e cluster fl'a1ne.
Since the pion c.m. momentum kit~ and its mo-
mentum k ii in the cluster frame are related by a
Lorentz transformation"

Y(~ II+E) 1

Eg. (2) implies that (after integration over k~ and
with stated normalization)

g (n, ; x) =
(
—)'

*—exp —a (
——t)*,

n -=E'/(k, ').
Substituting (5), (6), and (14) into (12), we obtain
at infinite energy
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For x&0.5 the cluster mass is low, so our statis-
tical treatment of the decay is expected to be in-
adequate. In the wee-x region, tx I

~ (4(k ~')/s)'/',
although our +(0) is finite, its magnitude, as
mell as its shape, is not reliable because in that
region the tmo clusters are expected to have a
considerable overlap in momentum space and
should not be treated as completely independent
of each other.

The pion spectra in KP and mP collisions can
similarly be calculated. Because of the lack of
space here me describe them in a future publica-
tion, mentioning here only that the a,symmetry in
the x distribution can be readily understood with-
in this model.
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FIG. 2. Pion spectra in P+P -7r +anything. Solid
curves are theoretical predictions. Data are taken from
Befs. 2, 4, and 17. Everything is normalized to unity
at x =0.2. The data points are all for k~ in the range
from 0.16 to 0.22 (GeV/c)2. Their dependences on km*
are essentially the same as the results after integra-
tions over k~.
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