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The model Hamiltonian used by Nozieres and De Dominicis in calculating the threshold
behavior of x-ray emission and absorption in metals is applied to the situation where a
core excitation is created by a fast electron. Explicit expressions are given for the ex-
ponent governing the threshold behavior. For transitions involving s-state core levels
it is possible for stronger threshold divergences to occur than for the x-ray problem.

Threshold singularities are well-known phenomena in x-ray absorption and emission. ' ' Recent the-
oretical work shows that this singular behavior is due to the interaction of the suddenly created (in the
case of absorption) or annihilated (in the case of emission) core hole with the low-lying single-partic], e
excitations of the conduction electrons. ' " In this Letter we use the model of Nozieres and De Domin-
icis' (hereafter referred to as ND) to show that threshold singularities are expected in appearance-po-
tential spectroscopy" "(APS) and to calculate the critical exponents expected for the divergences.

Briefly, in APS a fast electron (100-1000 eV) is used to create a core excitation, leaving the system
in a final state which has a core hole and two additional electrons in the conduction band. Experimen-
tally one measures the total yield of soft x rays produced when the core hole de-excites as a function
of the incident electron energy and thus measures a quantity proportional to the cross section for ex-
citing the core hole. At threshold the two additional conduction electrons are at the Fermi level.

%e consider free conduction electrons which only interact with the potential of the core hole, and
assume a structureless deep hole. Although there are strong plasmon satellites in APS, " "here we
only consider the threshold behavior of the primary core-hole excitation. Thus we take as the model
Hamiltonian describing the dynamics of the solid'

H =pe»C»tC»+b, aat+ Q V(k„k)C»t»C» aud
k k~ sky

where C» t is the operator which creates a conduction electron in the momentum state k (we implicitly
include the spin index in the k label but assume spin-independent interactions), a is the operator which
annihilates the core electron in the deep state under consideration, and —4 is the energy of the deep
level (4)0), and the potential V is the same one which enters the x-ray problem. We take as the part
of the Hamiltonian describing the creation of the core hole by the incident electron beam

H, = Q W(k; k, k,)C„C» C»a.
k»k y»k2

%e treat the high-energy incident electron as distinguishable from the other electrons of the solid and
hence, for an incident beam of energy ek. the cross section for creating the core hole is"

do~ Jdt exp[is» t] Q W(k;;k„k,)W*(k;;k„k,)(C, (t)C» (t)a (t)a(0)C» (0)C» (0)),
k I» k2» k3» k4

where angular brackets indicate the expectation value in the initial ground state of the system which
contains no core holes. The time dependence of the operators in Eq. (3) is described by the Heisen-
berg representation' for the Hamiltonian given by Eq. (1). Thus the scattering cross section is de-
termined by the function

r. . . , (t„t„t„ t;, ~„~,}=(Tc„(t,)c, (t,)c, '(t,)c„,'(t,)a(~,)a'(~,)).
I' obeys the following equation of motion:

(4)

[slat, +&&»]&», »», »~(t„ t», t„ t4; T„&,)

—t E „V(k„k,) &TC, ( )~(t)~ (t,)C,(t,)C, (t,)C, (t.)~(7,)~ (~.)), (5)
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where

F,, p,(t„ t„' &„&,) = (TC„,(t,)C„, (t,)a(~,)a (r,)). (8)

Although it is possible to calculate the function E from its equation of motion, ' it suffices to note that
E determines the response function in the case of the creation of a core hole by an x ray and so we can
simply take over the results of ND for it. Next we note in analogy to the x-ray calculation that the
last term on the right-hand side of Eq. (5) vanishes unless r, & t, &v„and for this particular time or-
dering

a(t,)a ~(t,) = l. (7)

Thus the equation of motion for 1 closes and does not involve higher-order correlation functions. This
is a direct consequence of the "assumed" structureless nature of the deep hole. Noting that the term
in brackets on the left-hand side of Eq. (5) is the inverse of the free-electron Green's function G, we
rewrite Eq. (5) as the following integral equation:

k, k, k~, k 1&4t 3t 4i lt 2) Gk 0 (tl t4) k, k~(t2&t3i 1& 2) 0 ~ Jh ( 1 3 0 1 (4& 4& lt 2)

—i J'dt Q G„, (t, —t)V(q„q,)F, „„„(t,t„t„t„v„7,). (8)
1 qil q2

To proceed further, we expand the deep hole potential in spherical harmonics as

v(q„q, ) =Q, v, (q„q,)1', *(n, ) 1', (n, ).
Furthermore, we assume that each component of V, is separable, i.e.,

(9a)

v, (q„q,) = v, v, (e, ) v, (~, ), (9b)

where U, is a cutoff function centered somewhere near the Fermi surface. ' With the form of the po-
tential specified by Eqs. (9), the momentum sums in Eq. (8) can be immediately performed leaving on-
ly the time variable to consider. In what follows, we illustrate how the calculation proceeds for the
specific case of s-wave scattering, and then discuss the generalization to the higher partial-wave com-
ponents.

To determine the dominant threshold behavior we need only the asymptotic solution of Eq. (8) for
large time intervals. Thus we nay use the following asymptotic expression' for 6:

G(t) = —iv, [P(1/t+tan85(t) ], (10)

where we are measuring energies relative to the Fermi energy |L(,, P denotes the principal-value inte-
gral,

v, = v( V) &'(u), (lla)
v(e) is the density of states, tan8 is related to the scattering phase shift at the Fermi energy [6(p) = 5]
by

tan5 = wg/(1 —~tan8), (lib)

G(t, —t,)z(t„ t„~„T,) —G(t, —t,)z(t„ t„.7 „~,)~(t t t t T T)=1& 2t 3~ 4' 1t 2
y +g tang

tan5
+ dtP iI'(t, t2, t„ t~; Ti, T2).

7T

1

Equation (12) is essentially the same integral equation faced by ND and is a member of a class of sin-
gular integral equations discussed at some length by Muskhelishvili. '8 We take the perturbative solu-
tion and obtain

(12)

and g= v, V, , Using the form of G given by Eq. (10) we find that Eq. (8) can be rewritten as (dropping
the momentum subscripts as a notational convenience)

(isa)

1051



VOI.UME 27, NUMBER 16 PHYSICAL REVIEW LETTERS 18 OCTOBER 1971

where

1 —vgtan0 v T, —t, ) ~„(t—T, 1 —vgtan6 f- t, )
1

(13b)

cp' is simply the one-electron Green's function in the presence of the transient core-hole potential. '
Since

F(t, t; &„& ) = g(r, —& )p'(t, t„' &„&,),

where

(14a)

(14b)

y„, '- (e '"'iv, )/t(i], t)'"'5„
where $, is a cutoff factor of the order of the conduction bandwidth and the effects of spin are included
in determining the exponents in Eqs. (15). Hence, as far as its asymptotic behaivor goes

(15b)

(~, ,(&)~,,(&)~'(~)~(o)~, '(0)~,, '(o))
-

jest

( ~
f)2(62gw&)

which gives the following divergent behavior of the cross section near threshold":

e -2iPt (Zp h2

we see that Eq. (13) has a simple physical interpretation. I' is simply the deep hole propagator multi-
plied by an antisymmetrized product of one-electron Green's functions in the presence of the core-
hole potential. The generalization of the calculation to any number of final-state electrons is obvious.
For the time ordering entering' Eq. (3),

g-e ' '/(i«)""' (15a

(17a)

where the exponent characterizing the threshold behavior is given by

y = (45/& —1) —2(5/~)' = (25/w —1) + n. (17b)

In Eq. (17b) o. = 25/v —2(5/v)' is the exponent governing the divergence in the x-ray problem. ' When
we have predominantly s-wave scattering, the Friedel sum rule tells us that 5 = ~&. For this case y
= n and the APS and the x-ray threshold behavior should be the same.

It is straightforward to generalize the preceding discussion to take into account the effects of higher
partial waves. We expand the transition matrix element in terms of partial waves, obtaining

Z +(im)(i'm')+&i ~i~ ~2)~(&m)(~a ) (i'm')@a).
(lm){ l 'm')

(18)

As was the case in the x-ray problem, each angular momentum component (lm) defines an independent
channel, ' and thus we may directly take over the results of ND for g and q'. The result is

V2 yll
der Q -[W(g &&,

.)f
(i~)(i 'm') 0

where the exponent governing the threshold behavior of each term in Eq. (19a) is
2

—1 —2+ (2l + 1)(~
l

(19a)

(19b)

An expression similar to Eq. (19a) has been found for the Auger emission threshold. "
In the case of an x-ray-induced transition there is a ~l =+ 1 selection rule. This is not the case for

an electron-induced transition where near threshold we expect conservation of angular momentum.
Since we have a high-energy incident electron, it effectively has many angular momentum components
and so there are probably no angular momentum selection rules involved in the APS transition. Hence
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it is possible for a transition involving an s-state core level to have a divergent threshold behavior for
APS and not for the x-ray case.

In conclusion we note that many simplifying physical assumptions are embodied in the model Hamil-
tonian and just as in the x-ray case, ' additional effects may tend to smear the threshold behavior.
However, the contrasts between APS and x-ray threshold behavior hopefully wi11 encourage experimen-
tal tests of the predictions of the model.

I would like to thank L. Dworin for a critical reading of this manuscript and I am grateful to P. No-
zieres and to D. C. Langreth for calling Ref. 20 to my attention.
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The electron states of amorphous and single-crystal trigonal selenium were investi-
gated by high-resolution photoemission spectroscopy. Structures due to a high density
of states 0.2 eV below and 6.9 eV above the valence-band edge for crystalline Se are ab-
sent in the amorphous phase, but structures due to deeper valence-band density-of-
states features remain. The results provide the first direct evidence for disorder ef-
fects on the Se valence and conduction bands and agree with calculations for amorphous
Se using a pseudopotential formalism.

There have been a number of band-structure
calculations for trigonal selenium, the most
recent due to Sandrock' using the pseudopotential

method. A pseudopotential formalism was also
adopted recently by Kramer and co-workers' 4

in their approach to the problem of calculating
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