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Zone Oscillations in the Magnetoresistance of Tin
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A very high-frequency (2.458 x10 6) quantum oscillation corresponding to the quantiza-
tion of flux through the cross section of the Brillouin zone —Pippard's "zone oscillation"—is found when H is within 1 of the c axis. It is best seen at 4.2 K, where it constitutes
5% of the resistance, while its anomalously small effective mass causes it to be swamped
by slower oscillations at 1 K. A second harmonic is seen for H within 0.04' of the e axis.

When magnetic breakdown couples electron or-
bits in a metal into a network, any theory of the
energy states of the system must take account of
the gauge of the magnetic vector potential. This
problem was discussed by Pippard' who showed
that if, at a point r, an electron was switched
from one orbit of gauge center R, to another of
gauge center R, it was necessary to introduce a
phase shift a = —,

' tz. r x (R, —R,), where o. = eH/8;
This phase shift is origin dependent, and so in a
two-dimensional network the magnetic wave func-
tion of the coupled system will not in general
have the same translational symmetry as the lat-
tice of coupled orbits, except for discrete mag-
netic field values such that b, /2s is integral.
These field values are exactly those which would
be given by quantizing the flux through the Bril-
louin zone, ' and so Pippard predicted that a "zone
oscillation" should occur in the properties of the
two-dimensional network of coupled orbits. '

The purpose of this Letter is to report the first
observation of this zone oscillation in the trans-

verse magnetoresistance of a single crystal of
tin. The appropriate two-dimensional network of
coupled orbits, Fig. 1, occurs when H is near
the c axis, and it is in this region that we see
the zone oscillation.

At 1'K the quantum oscillations which we ob-
serve are a slow frequency of 1.7 x10' G and the
fast frequencies 1.13 &10' G and 1.33 &10' Q, in
agreement with previous work, ' corresponding
to the extremal cross sections of the orbits 5,
and B of Fig. 1. At 4.2'K the amplitude of these
fast oscillations is so reduced by the Dingle fac-
tor as to be practically undetectable. At this
temperature we find that if H is within about 1'
of the c axis the dominant oscillation is the much
faster frequency of 2.458 &10'G—the "zone oscil-
lation. " When H is nearer than 0.04 to the c
axis there is even a second harmonic of the zone
oscillation. Examples are shown in Fig. 2, where
these very fast oscillations represent about 5@
of the total resistance.

In all previous observations of quantum oscil-
lations, except for the very low-frequency quan-
tum interference effect of Stark and Friedberg, '
the frequencies have corresponded, even for net-
works of coupled orbits, to the quantization of

FIG. 1. The network of coupled orbits when H is
along the c axis in tin, and breakdown couples orbits
in the third and fourth zones. The orbits Q, f, and J3

are shown, as well as the combined orbit g+B which
has an area (shaded) equal to /+25.
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FIG. 2. Typical examples of zone oscillations at
4.2'K and 7 ko. (a) H within 1' of the e axis. (b) H
within 0.04' of the i." axis; second harmonic appears.
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flux through the areas enclosed by actual elec-
tron orbits. The zone oscillation is an excep-
tion to this rule in that it represents the quan-
tization of flux through an area which is not en-
closed by a possible electron orbit, i.e., it is
not possible to find a closed electron path which
encloses an area equal to the cross section Z of
the Brillouin zone.

The closed orbit nearest in area to Z, (+B of
Fig. 1, has the area Z+25, differing from Sby
only 1.5%. To obtain the required accuracy to
distinguish between these frequencies, we mea-
sured the magnetic field during the actual run
using the NMR of copper. A Fourier analysis of
our very fast oscillations gave the components
shown in Table I. The principal frequency 2.458
x10' 0 agrees well with the value of Z calculated
from Craven's' lattice parameters for tin, 2.459
~10' G. The other components identify with other
combinations of Z and 6 including the second har-
monic 2Z and its satellites. Of these components,
only Z+ 25 represents a possible closed orbit.

The field and temperature dependenees of the
amplitude of quantum oscillations are governed
by the Dingle' factor, [yT/sinh(yT)]exp( —yT*),
where y = 2km*/eII and m*= (8'/2s)BA/Be. Usual-
ly there is an approximate proportionality be-
tween the frequency and m*, but the zone group
of oscillations would be expected to show anom-
alously small values of m*. In fact, Z itself is
an area which is independent of electronic ener-
gy, i.e., to corresponds to zero effective mass,
while its satellites should have m* values of
0 1&pl p and 0 201%p Dluch smal ler than the value s
0.6mo and 0.8mo for f and B respectively. It is
exactly this property of anomalously small I*
which explains why the zone oscillations are
dominant at 4.2'K but are swamped by slower
oseillations at 1'K.

Similarly the observed change of amplitude
with field is also anomalously small. If we as-
sume that 7'* will be the same for all frequencies
on a network, it appears that the falloff with
field is also described by a small m~. Thus the
usual "rules" that the faster oscillation will have
the bigger temperature dependence, the steeper
field dependence, and the smaller amplitude do
not hold for the zone oscillations. The observed
properties of these very fast oscillations are, at

TABLE I. The frequency components of a Fourier
analysis of a 4.2'K sample, compared to predicted fre-
quencies based on the lattice parameters given by Cra-
ven (Ref. 6).

Measured
frequency Relative

(10~ G) amplitude Identification

Predicted
frequency

(1O' G)

2.458
2.476
2.494
2.441
2.424
4.917
4.935
4.953
4.899
4.881

1
0.59
0.24
0.49
0.22
0.53
0.27
0.09
0.31
0.06

Z
Z+Q

Z+ 2Q

Z —Q

Z 2Q

2Z
2Z+5
2Z+ 25
2Z- Q

2Z —25

2.459
2.476
2.493
2.442
2.425
4.918
4.935
4.952
4.901
4.884
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least qualitatively, consistent with the Dingle
formula and small values of m*. This implies
that high harmonics of the zone oscillation should
be readily observable although of course limited
by the inhomogeneity of the magnetic field. How-
ever, since we see a large-amplitude second har-
monic of the zone oscillation only when H is with-
in 0.04' of the c axis, it is likely that considerab-
ly more accurate location will be required to find
find the higher harmonies.
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