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Further details will be given elsewhere but it may
be remarked here that the resulting distribution of ft
values reproduces very mell that found in practice
across the two shells.

A=24 has logft = 6.1. The Monte Carlo computation
showed that, as expected, large ft values tend to en-
train large (positive or negative) values of 6/6p and

this effect may be operative here.
D. H. Wilkinson, to be published.

5See, e.g. , J. C. Hardy, H. Brunnader, and J. Cerny,
Phys. Rev. Lett. 22, 1439 (1969).

See, e.g. , H. J. Blin-Stoyle, in Isospinin Nuclear
Physics, edited by D. H. Wilkinson (North-Holland,

Amsterdam, 1969).
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The exact mode expansion is derived for the electromagnetic field in a spatially disper-
sive model dielectric occupying the volume 0-z —d. The dispersion relations for the
transverse as well as the longitudinal waves are deduced and the nature of the modes is
briefly discussed.

Electrodynamics of spatially dispersive media, i.e., of media whose response to an incident electro-
magnetic field is spatially nonlocal, has attracted a great deal of attention since Pekar' predicted some
rather remarkable phenomena associated with spatial dispersion. The close connection between this
subject and the theory of excitons is, of course, well known. '

In spite of the great deal of interest in this subject, some rather basic questions in this domain have
as yet not been solved. One of them concerns the exact mode expansion of an electromagnetic field in

a spatially dispersive medium that does not occupy the whole infinite space. It is often assumed that in

any volume occupied by a spatially dispersive medium the electromagnetic field may be expanded in
terms of plane waves whose (generally complex) propagation vectors are identical with those appropri-
ate to a field in a spatially dispersive medium occupying all space. That this assumption is question-
able is clear if one recalls that in a half-space, even in the absence of any material medium, plane
waves may be propagated that cannot be physically realized in the whole empty space. These are the
so-called evanescent waves, well known in the theory of total internal reflection' and in connection
with other interaction problems. '

In the present paper we derive an exact mode expansion for the field in a spatially dispersive model
dielectric that occupies the volume —~ x- ~, —~- y - , 0- z - d. The exact dispersion relations
for both transverse and longitudinal modes are found, and the nature of the expansion is briefly dis-
cussed. This mode expansion has a bearing on many aspects of the electrodynamics of spatially dis-
persive media and on the theory of excitons. We will show in another publication that our expansion
leads readily to the exact solution of the problem of refraction and reflection on a half-space filled with

a spatially dispersive medium and that the solution provides complete resolution of a long-standing
controversy about the so-called additional boundary conditions, "' generally believed to be necessary
for the solution of this problem.

Consider first an electromagnetic field in a spatially dispersive medium occupying the whole infinite
space. For the sake of simplicity we assume the medium to be homogeneous and nonmagnetic. The
constitutive relation which couples the electric vector E and the electric displacement D may be ex-
pressed in the form

D(k, ~) = ~(k, ~)E(k, ~), (1)

where the circumflex denotes a faur-dimensional Fourier transform [with kernel e'("' ' '~]. Following

Hopfield and Thomas, we restrict our discussion, for the sake of simplicity, to a medium for which
the dielectric constant c(k, ~) is of the form

E(k~ (d) = E'0((d) +A (d [Go —(d +(8(d /m +)k —t(dF ]

Here, e, (~) is the wave-vector-independent background dielectric constant associated with all transi-
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tions other than the exciton transition at frequency +„n, is the oscillator strength associated with the
exciton transition, m, denotes the effective mass of the exciton, and I', ()0) is the phenomenological
damping constant, whose dependence on k will be ignored. Equation (2) may be expressed in more
compact form:

c (k, cu) = e, (ur ) +y, (&o)/(k' —p,'),

where

y, ((u) =m, ~(o,o,/5, p,' =(m, +/Aa), )((u' —(u,'+ j(ul', ). (4)

I.et us take the three-dimensional Fourier transform on k of (1). Then on using the convolution theo-
rem on Fourier transforms and the expression (3) for e(k, u&), we obtain the following relation between
the Fourier frequency transforms of E and D:

4m~ r-r'
Equation (5) is strictly valid only for a medium occupying the whole infinite space, but we may assume
that it is valid, to a good approximation, for a medium occupying a finite but sufficiently large vol-
ume V; in that case the integration in (5) extends over the volume V only.

It readily follows from Maxwell equations, on eliminating the magnetic field and on using Eq. (5),
that the electric field satisfies the following integro-differential equation:

VxV&&E(r, (o) ——2eoE(r, ~)=, , E(r', u&)d'v',
X&@2 exp(i@, t r —r 'i)

c2 ' ' 4mc' ~ r-r'
where, for the sake of brevity, we have dropped the subscript e from p., and X,.

Equation (6) is one of the basic equations of our theory. We will now derive a general solution~n
the form of a mode expansion —of this equation for the case when the volume V is the domain 0 - z ~ d,
—~ (x ~ &, —~ ~ y (~. For this purpose we take the two-dimensional Fourier transform of E(r, &u)

with respect to the variables x and y:

E(r, co) = ff E (u, v, z; (u )e ' '" " ' "'du dv (7)

Next we recall the following representation" of the kernel of the integral in (6), valid if Rep ~ 0, Imp
&» 0+

exp(ipse r - r'i) i rr 1ff ——exp(iu(x-x')+iv(y -y')+iwiz -z'i}dudv,ir--r-
(

(6)

where

~ —(~2 g2 v2)i/2

and the square root is defined so that Rene &0, Ime & 0. „
On substituting from (7) and (8) into (6), we find that E(M, v, z; ~) satisfies the following integro-dif-

ferential equation:

4P ~ B2 ~ jy~m de &I&

(u +v'- —e )E — E+I = E(u v z'&u)dz'
g2 0 2g, 2 (10)

vrhere I is the vector whose components are

I., =iud, I., =ivy, I., =Bg/Bz; $ = (iuE„+ivE, + BE,/Bz).

Equation (10) may readily be converted into the following linear differential equation with constant
coefficients:

B4E QP B2E ) ~2 y~2 I B2
+ —e-u —v+W~+W —e-u~ —v--E=+w)L,gZ4 g2 0 gZ2 C2 0 C2 gZ2
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The most general solution of (12) may be shown to be given by

E(u, v, z; (u) =+A,.(u, v; &u) exp(ia, .z) gA, . '(u, v; &u) exp(io, . 'z), (13)

where 0, and 0,. ' are the roots of the equations

o4 g2 [(~2/e2)~ u2 v2 +~2] +~2 [((,2/e2) ~ u2 vR] ~~2/e2 —0

0 -ZO +—=0.f 2 2 X

00

On substituting (13) into (7), we obtain the following general expression for E(r, ~):

(i4)

(i5)

E(r, ~) = ff$(r, (u; u, v) du dv,

where

(i6a.)

(16b)
4 2

h(r, a&; u, v) =+A,.(u, v; (o)e'"~" ++A,. '(u, v; cu)e'"~"
j=l j=1

In (16b), k, and k',. are the (complex) vectors defined by

k,. -=(u, v, o,.); k,. ' -=(u, v, v,.').

The vector functions A, and A',. are, however, not quite arbitrary. They must satisfy the following
constraints, that may be deduced by substituting from Eq. (13) into Eq. (10):

(k, A)k, =0, j=1,2, 3, 4;

(kq'k, .')A,. ' —(k,. 'A, . ')k,. ' =0, j =1,, 2;

, , (o, —ut) ~ (0,. ' —(u)

4 X, 2 A '

, , (o,. +w ) ', , (o,.'+u )
exp[i(0, +u )d]+g, ' — exp[i(v, '+w)d] =O.

(18)

(19)

(2o)

(21)

We now examine the nature of the solution given by Eq. (16). From the manner in which the solution
was constructed, it is clear that for each u, v, and cu, Ã(r, &';u, v) satisfies the basic integro-differ-
ential equation (6). Thus (16a) expresses the field in the domain 0- z (d, —~ (x- ~, —~ - y (~ as a
superposition of modes of Eq. (6), appropriate to that domain. Each mode is labeled by the parameters
u, e, and ~, and is seen to be a linear superposition of six plane waves, whose wave vectors are given
by Eq. (17). Since these wave vectors are, in general, complex, the waves are inhomogeneous. We
set

O' = G + gp~i (T~ =a~ $6+

where o.„p,, a, , and b, are real. Then a typical plane wave of the "A type" has the spatial dependence
exp'(ux+vy+a, .z) —Ppj. It is seen that the surface of constant phase of such a wave is propagated in
the direction whose direction cosines are in the ratio u:v:0',. and the amplitude of the wave decreases
or increases exponentially with increasing z according whether P, is positive or negative. It is readily
found on examining the four roots 0',. that each (u, v, w) mode consists of two A waves and of one A'
wave propagated from the plane z =0 towards the plane z =d, and of two X waves and one A' wave prop-
agated from the plane z =d towards the plane z =0. There is a basic difference in the A and the A'
waves, as is seen at once from Eqs. (18) and (19). These equations show that the A waves are trans-
verse and the A' waves are longitudinal (both in the generalized sense appropriate to plane waves with
a complex propagation vector). If we recall that k,* =u'+v'+o, ' and k,"=u'+v'+o, ", then it is clear
that Eq. (14) is the dispersion relation for the transverse &eaves and that Eq. (15) is the dispersion re-
lation for the longitudinal loaves "Equatio. ns (20} and (21) are seen to couple these waves

Finally, for the sake of completeness, we also write down the mode expansions for the Fourier fre-
quency transform of the electric displacement vector D and of the magnetic fields H and B. It is found
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on substituting from (16) into Marvell equations and on using Eqs. (5) and (18)-(21) that

D(r, tu) = Jf 5)(r, to;u, v)dudv, H(r, &) =B(r, tu) = ff R(r, tu;u, v)dudv,
where

S(r, (u;u, v) =Q eo((u)+ s 2 A,.(u, v;(u) exp(ik, .r),
j=l
4

K(r, ru;u, u) =g —)(k, xX,. (n, v;Qliexp(ik, . f)
j=1

(24)

(25)

(26)

It is seen that no longitudinal modes appear in the expressions (25) and (26).
It is clear that our mode expansion can be used to treat a variety of problems involving the interac-

tion of an electromagnetic field with a spatially dispersive medium. We will illustrate the technique
in another paper.
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In a study of s p p n and w+n —p p at 7 GeV/c we observe a distinct change in the
ws angular distribution for It~I -0.8 (GeV/c) . Here there is a strong sin~&sin2ip term
in the decay angular distribution which is indicative of natural-parity exchange. The ob-
served effects are attributed to A.2 exchange.

This paper is concerned with the production of
the p meson. We center our attention on p pro-
duction at large rather than small values of the
momentum transfer. The data mhich we discuss
mere derived from extensive exposures of the
Midwestern Universities Research Association-
Argonne National Laboratory 30-in. bubble cham-

ber to w p and &+6 at 7 GeV/c incident ~' momen-
tum. " In the course of these two exposures we
have analyzed approximately 10000 events giving
rise to a &' and a & plus a recoiling nucleon
(-~ of the events are from the &+d exposure).

As is well known, at small I t I values the p'
production is dominated by one-pion exchange

1025


