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Mev. If we then require ED= 80A '" we find
from Eq. (13) A, = 40 MeV and therefore also 6,
= 40 MeV. With Eq. (9) kept in mind we finally
arrive at the result

Uc= [(100-40) MeV]T/A =(60 MeV)T/A. (16)

We summarize our results as follows. In the
discussion of the isospin splitting of single--pro-
ton levels we start with the observatien that the
single-proton energy is equal to that of the cor-
responding neutron plus the Coulomb energy
minus the symmetry energy. The latter mea-
sures the difference in the nuclear interactions
between a neutron and a proton with the nuclear
core. The energy difference between the two
isospin components of the proton state is then
given (apart from the geometrical factor) by the
symmetry energy. In the dipole problem, how-
ever, we are comparing the energy of neutron-
proton-hole states with that of proton-proton-
hole and neutron-neutron-hole states in order to
find the appropriate symmetry energy. Together
with the particle-shell interactions this involves
also the difference in the particle-hole interac-
tions which, as we found, reduces the effective
symmetry energy. The separation of the two iso-
spin components is then given by a familiar ex-
pression [Eq. (7)] but with "symmetry energy"
appropriately evaluated for the dipole problem.
Our approach has been rather simple-minded but
it should be expected to describe general trends
and to provide a meaningful comparison with ex-

perimental data. "
We wish to thank Professor P. Paul for sever-

al stimulating discussions.

*Work partially supported by the U. S. Atomic Ener-
gy Commission.

See e.g. , E. K. Warbuxton and J.Weneser, in lso-
spin in Nlclear Physics, edited by D. H. Wilkinson
(North-Holland, Amsterdam, 1969},p. 173.

2S. Fallieros and B.Goulard, Nucl. Phys. A147, 593
(1970}, and references mentioned therein.

3B. Goulard, T, A. Hughes, and S. Fallieros, Phys.
Rev. 176, 1345 (1968).

4This problem has also been discussed by A. Bohr
and B.R. Mottelson, in Proceedings of the INteraatioa-
aE Symposium on Neutron Captgre Gamma Ray Spec-
troscopy, Studsvik, Sceeden, August 2969 (Internation-
al Atomic Energy Agency, Vienna, Austria, 1969),
p. 8.

~See also B. Leonardi and M. Bosa-Clot, Phys. Bev.
Lett. 23, 874 (1969).

G. E. Brown, Unified 2%eory of IIuclear Models asd
forces (North-Holland, Amsterdam, 1967}.

A. M. Lane, Nucl. Phys. 35, 676 (1962).
8See e.g. , A. Bohx and B. R. Mottelson, ¹clear

Structure (Benjamin, New York, 1969), p. 238.
E. G. Fuller and E. Hayward, in Nuclear Reactions,

edited by P. M. Endt and P. B. Smith (North-Holland,
Amsterdam, 1962), p. 164.

ORef. 8, p. 389.
~~For a discussion of experimental results and their

comparison with the theoretical results of this work,
see P. Paul et aE., preceding Letter f Phys. Bev. Lett.
27, 1O13 (1971)).

fl Asymmetry in Mirror Gamow-Teller p Decay: Binding-Energy Effects

D. H. Wilkinson*
University of Washington, Seattle, Washington 98105

(Received 27 August 1971)

It is shown that the systematic asymmetry observed between positron and negatron
emitters in mirror Gamow- Teller P decay is not due to binding-energy differences be-
tween the respective P-transforming nucleons; it must be due either to a fundamental
weak interaction effect or to a nuclear structure effect of some type not yet quantitative-
ly discussed.

Mirror Gamow-Teller P decay takes place from
analog T =1 states, such as 'Li and 'B, leading
to a common T =0 final state, or from analog T
= & states, such as 'Li and 'C, then leading to
analog T =

& final states. Contrary to simple
ideas, the reduced speeds of the mirror positron
and negatron transitions, (ft)' and (ft), respec-
tively, are systematically different' '; the asym-
metry parameter 5 =(ft)'/(ft) —1 is typically

+0.15 or so, as is shown in Tables I and II.
This surprising asymmetry may be due either

to a new weak-interaction effect such as a sec-
ond-class current" of some type' or to a failure
of exact symmetry in the nuclear structure. It
is critically important to distinguish between
these fundamental and trivial explanations. Of
the trivial effects so far considered quantitative-
ly, the only one of significant magnitude is that
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TABLE I. Mirror asymmetry in the 1P shell.

logft
(expt) (theo r) (A) (A} (expt}

8 548
9 5.19
9* 5.13

12 4.10
12+ 5.10
13 4.06
13*" 4.48

5.26
5.12
5.10
4.11
4.80
3.93
4.68

0.132
0.086
0.081
0.074
0.075
0.049
0.052

0.075
0.040
0.039
0.047
0.044
0.030
0.029

0.040
—0.050

0.062
0.146
0.063
0.047
0.013

0.048
—0.016

0.026
0.098
0.048
0.031

—0.001

—0.014

0.043

—0.002

0.027

0.107 +0.011b

0.188 +0 030

0.115+0.009
—0.117+0.041

0.166 ~0.026~

'((})takes into account branches to excited states.
Ref. 6.

'Ref. 1 with small corrections.
E„=2.43, 2.33 MeV in Be, B, respectively.
E„=4.44 MeV.

I This figure derives from i2N/i branching-ratio ratios of 1.72+ 0.15(Ref. 8) and 1.84+ 0.10 (Ref. 9).
gRef. 4.
E„=3.68, 3.51 MeV in C, N, respectively.

due to the binding-energy difference between the
proton that makes the I8 transition in the positron
emission and its mirror neutron that accomplish-
es the negatron emission. " This binding-energy
difference entrains different overlap integrals
with the particles into which P transformation
takes place, and hence generates a finite 0 (of
plus a few percent for A =12, the only system so
far treated"'"). This note demonstrates that
this effect cannot, in fact, systematically ac-
count for the experimental asymmetry and so
eliminates what appears to be the most impor-
tant of the trivial explanations.

A defect of the earlier calculations"'" of the
binding-energy effect is that they are single-
particle computations in which the ground state
of the parent nucleus is taken as the unique par-
ent. In fact, a whole spectrum of parent states
is operative in the A —1 system: It is only by
taking this into account that the actual ft values
can be understood; the finer effect that concerns
us here must certainly have regard for it. For
the 1P-shell cases (Table I), excellent wave func-
tions are available from Cohen and Kurath" and
they have been used here. For the (2s, 1d)-shell
cases (Table II), similarly detailed wave func-

TABLE II. Mirror asymmetry in the (2s, 1d) shell.

17
18
20
24
25
28
30

0 p(idp/ p}

0.023
0.005
0.033
0.030
0.029
0.040
0.004

6 p (2s i/ 2}

0.072
0.013
0.082
0.070
0.060
0.084
0.008

6 (expt)

0 15,0 03b
—0.008 +0.015

0.054 +0.023
-0.03 *0.06

0.207 +0.065g
0.25 %0.05
0.02 ~0.05

0 (expt) /bp '

4.3 +0.9
~ ~ ~

1.2 +0.5
—0.8 +1.8

5.6 + 1.8
4.9 +1.0

~, .d

0p here weights 6p(idp/p) and bp(2si/2} in the ratio 3:I appropriate to the re-
spective numbers of particles in the shells; this is not inconsistent with the Oak
Ridge wave functions (Ref. 10).

Ref. 5.
'Ref. 3.
4 =18 and 30 are not quoted because small 4 values may be expected for them,

as observed: They involve two successive positron emissions rather than the
positron-negatron comparison of all the rest.

Ref. 4.
f Ref. 1.
gRef. 7.
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tioris are not everywhere available, and a Monte
Carlo approach has been used instead. For both
shells we conclude that this binding-energy ef-
fect cannot systematically account for the experi-
mental asymmetry.

The single-nucleon wave function associated
with each parent state falls off asymptotically
outside the nucleus as prescribed by the separa-
tion energy with respect to that parent state. In
the IP shell two approaches have been made to
the problem of the single-nucleon wave functions
inside the nucleus. In the first approach, method

A, the wave functions were generated in stan-
dard" Woods-Saxon potentials with r, = 1.36 fm,
a =0.55 fm, including a Thomas spin-orbit term
of strength 9(}t/m, c)' MeV (plus a Coulomb term
as needed); the various separation energies were
induced by variation of the depth of the central
potential. The second approach, method 8, re-
spects the fact that the real situation is a compli-
cated one of many coupled channels"; the effect
of this is largely to remove, inside the nucleus,
the differences between the individual nucleon

(A'1'~'= &[3(2&y+ 1)(2—1/T, )]"'Z9(-) '

motions associated with the various parent states
but at the same time to allow these differences to
develop as the asymptotic region outside the nu-
cleus is approached. Prakash and Austern" have
suggested using a constant central potential plus
a 5 function of adjustable strength somewhere to-
ward the surface to induce the correct asymptot-
ic behavior. The present work adopts the gentler
stratagem of using a Woods-Saxon potential of
the above form but of fixed depth plus a potential
of Thomas form adjustable in strength to induce
the correct asymptotic behavior. For the fixed
central potential a depth of 49.V MeV has been
used, the mean of the values found necessaxy for
lt using method A. Method 8 is probably closer
to the truth but the results of both methods are
presented here. For the (2s, 1d)-shell cases
only method A, which probably exaggerates the
calculated effect, has been used.

In the many-parent description, the P-transi-
tjon amplitude for mirror transitions with N
equivalent nucleons, J'&- J&, where the parent
J„combines with j,-j, as J„+j,=j& and J,+j,
= J~, is given by

&&((2j,+I)(2j,+I)]"* .' j* ~' ~*

I (j(wj )(IIwj )II,
jf f w 2 2

where log(ft)'= 3.61 —logA'. Here the 0,&,&,
' are

the single-nucleon overlap integrals discussed
above. Then, {}=A /A' —1.

For the 1P shell the Cohen-Kurath fractional
parentage coefficients" yield the 5 values of Ta-
ble I; the logft values deriving from the same
wave functions there illustrate the excellence of
the theoretical account. 50 is the 5 value appro-
priate to the ground state of A —1 as unique par-
ent (using the nominal j„j,of jj coupling). We
see that the binding-energy effect fails systemati-
cally to reproduce the experimental 5 values. '0

Using method 8, ({},h„,)=0.042 vs ({),„,) =0.144";
method A gives ({),h„,) =0.054.

For the (2s, 1d)-shell cases of Table II the fol-
lowing Monte Carlo treatment has been used: A
reasonable distribution of the fractional parent-
age coefficients was adopted"; a distribution for
the 6j symbols, etc. was defined relating to the
situations operative in practice in both shells;
similarly, Q,~ ~,

' values were computed (using
method A) for parentage excitations that repro-
duce, statistically, those encountered in prac-
tice. The results of this computation" are shown
in Fig. 1 where the probability of a certain value
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FIG. 1. jResuits of the Monte Carlo computation of

the asymmetry 6 40 regards the ground state of A- 1
as unique parent. The arrows show the t)/&() values
from Tab1e I computed from the explicit detailed wave
functions for method A {dashed arrows} aud method 8
{solid arrows) .

of {) is displayed as a function of {}/{)„alsoshown
are the {)j{),values computed expbcitly for the
1p-shell cases from Table I. These explicit com-
putations fall well into accord with the Monte
Carlo computations. The experimental cases of
Table II may now confidently be compared with
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the Monte Carlo computation of Fig. 1. %e see
that the experimental 5/5, values ((5/5, ) = 3.0)
are exceedingly unlikely to be due to binding-en-
ergy effects, and also that 5/5, values of about
—2, symmetrically disposed to the left of the
maximum, should in that case be equally likely,
which they are not." The evidence of the (2s, 1d)
shell therefore conclusively rejects the possibil-
ity, both in respect to magnitude and, in a relat-
ed fashion, to sign, that the binding-energy ef-
fect can be responsible for the experimental
asymmetry.

The 1P shell and the (2s, 1d) shell therefore
give the same answer: The experimental asym-
metry is not due to the binding-energy effect on
the P-transforming nucleon. Other trivial possi-
bibtjes remain to be considered. The present
computation has concerned itself only with the
overlap integrals associated with the P-trans-
forming nucleons. But, in the P transition, the
other A —1 nucleons are not wholly unaffected
and their changes affect the transition rate. A
crude estimate'4 of this effect has been made in
a spherical basis in the 1p shell and it there
seems incapable by a large factor of explaining
the empirical effect. The trivial factor awaiting
serious quantitative evaluation is the possibility
of changes in configurational mix across the mul-
tiplets: For example, a change of deformation
will affect the P-transition moment to the power
A and so may be a potent effect. It would cer-
tainly be surprising if any such effect should have
about the same numerical magnitude over the
mde range of A covered by the experimental data,
and also that it should be of constant sign. It
must also be remarked that any attempt to explain
the p-asymmetry effect must respect the rather
good analog symmetry seen across light isobaric
multiplets2' and also the excellent conserved vec-
tor current evidence from the pure Fermi transi-
tions which display a high degree of mutual con-
sistency. "
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The exact mode expansion is derived for the electromagnetic field in a spatially disper-
sive model dielectric occupying the volume 0-z —d. The dispersion relations for the
transverse as well as the longitudinal waves are deduced and the nature of the modes is
briefly discussed.

Electrodynamics of spatially dispersive media, i.e., of media whose response to an incident electro-
magnetic field is spatially nonlocal, has attracted a great deal of attention since Pekar' predicted some
rather remarkable phenomena associated with spatial dispersion. The close connection between this
subject and the theory of excitons is, of course, well known. '

In spite of the great deal of interest in this subject, some rather basic questions in this domain have
as yet not been solved. One of them concerns the exact mode expansion of an electromagnetic field in

a spatially dispersive medium that does not occupy the whole infinite space. It is often assumed that in

any volume occupied by a spatially dispersive medium the electromagnetic field may be expanded in
terms of plane waves whose (generally complex) propagation vectors are identical with those appropri-
ate to a field in a spatially dispersive medium occupying all space. That this assumption is question-
able is clear if one recalls that in a half-space, even in the absence of any material medium, plane
waves may be propagated that cannot be physically realized in the whole empty space. These are the
so-called evanescent waves, well known in the theory of total internal reflection' and in connection
with other interaction problems. '

In the present paper we derive an exact mode expansion for the field in a spatially dispersive model
dielectric that occupies the volume —~ x- ~, —~- y - , 0- z - d. The exact dispersion relations
for both transverse and longitudinal modes are found, and the nature of the expansion is briefly dis-
cussed. This mode expansion has a bearing on many aspects of the electrodynamics of spatially dis-
persive media and on the theory of excitons. We will show in another publication that our expansion
leads readily to the exact solution of the problem of refraction and reflection on a half-space filled with

a spatially dispersive medium and that the solution provides complete resolution of a long-standing
controversy about the so-called additional boundary conditions, "' generally believed to be necessary
for the solution of this problem.

Consider first an electromagnetic field in a spatially dispersive medium occupying the whole infinite
space. For the sake of simplicity we assume the medium to be homogeneous and nonmagnetic. The
constitutive relation which couples the electric vector E and the electric displacement D may be ex-
pressed in the form

D(k, ~) = ~(k, ~)E(k, ~), (1)

where the circumflex denotes a faur-dimensional Fourier transform [with kernel e'("' ' '~]. Following

Hopfield and Thomas, we restrict our discussion, for the sake of simplicity, to a medium for which
the dielectric constant c(k, ~) is of the form

E(k~ (d) = E'0((d) +A (d [Go —(d +(8(d /m +)k —t(dF ]

Here, e, (~) is the wave-vector-independent background dielectric constant associated with all transi-
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