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but are a factor of 23 larger than the data of
Manning et al.* and Engler et al.® (not shown),
both obtained by a single-arm technique. This
discrepancy is large and unexplained. However,
Engler et al. have stated® that systematic errors
inherent in the overall normalization of the sin-
gle-arm technique could be as large as a factor
of 2.

The dependence on beam momentum p of do/dt
at fixed ¢ is shown in Fig. 2(b) for our data and
those of Friedes et al.® and Mischke et al.»? The
error bars in Fig. 2(b) include the estimated rel-
ative systematic uncertainty discussed above for
our data, and a conservative estimate” of the
normalization uncertainty in the data of Ref. 2.
The solid lines in Fig. 2(b) are the result of fits
to our data at four values of ¢ by the form do/dt
=A(f)p " (¥ ; the dashed lines extrapolate the fits
to lower momenta, where they are seen to de-
scribe quite well the average p dependence of the
Mischke data. The values of n resulting from the
fits are shown for all ¢ in the inset to Fig. 2(b).
Our data are consistent with a constant value of

n=2.1 for all |¢| between 0.002 and 0.50 (GeV/c)2.

Within errors, there is no indication that the
shape of the angular distribution is changing.
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We have studied the reaction e +p —~e¢~ +n* +n by detecting the final electron and pion
in coincidence. Data are presented in the region of virtual photon mass squared from
—0.18 to —1.2 GeV?, and virtual photoproduction center-of-mass energy and angle from

1.85 to 2.50 GeV and 0 to 20°, respectively.

We have performed a series of experiments at
the Cambridge Electron Accelerator (CEA) to
study electroproduction by detecting a charged

hadron in coincidence with the scattered electron.

This Letter presents our results for the reaction
e tp—e +qt+n.

To lowest order in the electromagnetic inter-
action this process can be treated as photopro-

duction by a virtual photon whose mass, energy,
direction, and polarization density matrix are
tagged by the detected electron. The cross sec-
tion can then be written!

d%o _ . do
dE'dQdQ, FdQ,, ’ @

where T" represents the flux of virtual photons,
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and (if no external polarizations are measured)
the virtual photoproduction cross section is given
by

do

as

=A+e€B cos2¢p+eC

+[e(1+¢€)/2]'/2D cos ¢. (2)

A, B, C, and D are functions of three vari-
ables: %%, the mass squared of the virtual pho-
ton; W, the total energy of the pion and neutron
in their center-of-mass system; and 6, the polar
angle between the virtual photon and the pion in
the pion-neutron center-of-mass frame. An
alternate variable is £, the invariant momentum
difference squared between the virtual photon
and the pion. ¢ is the azimuthal angle between
the electron scattering plane and the pion photo-
production plane. The phase of ¢ is such that if
the pion were emitted along the direction of the
incident electron, ¢ would be zero.

The polarization factor € which characterizes
the photon density matrix can be expressed in
terms of the incident and scattered electron en-
ergies (E and E’) and the laboratory electron
scattering angle (9,) by

e={1+2[1-(E-E")?/k*tan®(6,/2)}"". 3)

T is given in terms of these variables by?
r- L2 @)

In Eq. (2), A is the cross section for unpolar-
ized transverse photons, B is the contribution
due to transverse polarization, C is the cross
section for scalar photons, and D is the scalar-
transverse interference term. B and D must
vanish at =0, and C and D must vanish at 22=0.

Data were collected in three scans. In each
scan we varied the central setting of the appara-
tus for one of the three variables, %, W, and 6,
and kept the remaining two fixed. The central
settings of %* ranged from -0.18 to —1.2 GeV?
for W=2.15 GeV and 0 =0° the central settings
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FIG. 1. Schematic diagram showing side view of one
spectrometer. C denotes a wire spark-chamber mod-
ule, S denotes a trigger counter, and H denotes a hodo~
scope.
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of W ranged from 1.85 to 2.50 GeV for %?=-0.3
GeV? and §=0° and the central settings for §
ranged from 0° to 15° for £2= —0.40 GeV? and W
=2.15 GeV. Previous experiments®* have studied
the region of the first resonance, W=1.24 GeV,
for —%*<0.4 GeVZ

Our angular scan was confined to values of ¢
corresponding to pion production near the elec-
tron scattering plane; i.e., to ¢ near 0° and ¢
near 180°, Typically, € was 0.8 to 0.9. Because
data were taken at fixed €, we could not separate
A and C of Eq. (2). B could be separated only at
small 9.5

In our experimental arrangement, the CEA
external electron beam was incident upon a 15.9-
cm liquid-hydrogen target and was measured
downstream with a 'Faraday cup. The electron
and pion were detected in separate arms of a
two-arm magnetic spectrometer. The two arms
were mirror images of each other; a schematic
diagram of one is shown in Fig. 1. Each arm
consisted of a horizontally focusing half-quadru-
pole, a vertical bending magnet, a vertically
focusing half-quadrupole, and detection equip-
ment. The latter included five wire spark-
chamber modules, three scintillation trigger
counters, a scintillation-counter hodoscope, a
threshold Cherenkov counter filled with Freon
12, and a shower counter (used for diagnostic
purposes only). The spark-chamber modules
each contained four planes with magnetostrictive
readout. The Cherenkov counter on the electron-
detecting arm was set to count electrons but not
pions, and the one on the pion-detecting arm was
set to count pions but not K’s or protons. The
spark chambers were fired on two-arm coinci-
dences. The data were logged by an SDS 92-1BM
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FIG. 2. Typical missing-mass—squared spectrum
when electrons and pions are detected in coincidence.



VOLUME 26, NUMBER 16

PHYSICAL REVIEW LETTERS

19 ApriL 1971

Table I. Angular distributions of virtual-photoproduction cross sections and transverse-scalar interference
term D. Units are pb/sr and uncertainties are statistical only.

W(GeV) 2.15 2,31 2.02

x% (cev?) -.39 ~.354 -.426
c .870 .818 .91

do/an, do/dQ,, D Ao/dSy; do/aq,. D do/an,. do/an,, D

9 9=0° ©=180° ¢=0° ¢=180° @=0° 9=180°
0.8° 9.02+.682 8.29+,78°% 11.11+.91%
1.8° |10.43+1.09 8.5441.00 1.04#.85 |9.77+1.04 6.61+.99 1.84+.,86 [13,22#1,47 10.12#1.17 1.68%1.05
3.0° | 10.14+ .84 7.41+ .73 1.51+.64 |8.76% .72 4.55+.67 2.44+.58 |11.81+1.02 9.24+ .86 1.39+ .74
4.2° | 10.98+ .79 7.22+ .62 2.,08+.57 |9.14+ .61 5.62+.74 2.04+.57 [11.63+ .86 8.99+ .72 1.43+ .62
5.4° | 9.44+ .68 7.34+ .59 1.15+.51 |7.50% .47 4.14+.50 1.95+.41 [10.81* .74 8.22+ .60 1.40% .53
6.6° | 8.69+ .61 6.21+ .49 1.38+.44 |7.47+ .40 4.70+.45 1.61+.36 | 9.91% .66  7.61+ .52 1.24+ .46
7.8° 7.58+ .56 5.71+ .45 1,03+.40 |7.02+ .38 4,55+.43 1.44+.34 | 8.65+ .61 7.08+ .44 .85+ .42
9.0° 7.22+ .55 5.35+ .41 1.03+.39 |4.83+ .47 4.36+.44  .27+.38 | 9.19+ .64 6.78% .41 1.30% .42

10.2° 7.35+ .53 5,38+ .39 1,09+.37 4,12+.44 8.10+ .61

11.4° | 6.51+ .50 5.08% .37  .79+.35 4.87+.53 7.54+ .64

12.6° 4,71+ .41 4.24+ .31  .26+.29 3,09+.37 6.11+ .60

13.8° | 4.18+ .36 4.18+ .30  .00*.26 2.42+,35 4,95+ ,55

15.0° | 3.40+ .32 3.68+ .28 -,16+.24 3.54+.,40 3.85+ .50

16.2° 2.61+,33 3.67+ .49

17.4° 3,35+ .43

18.6° 3.01+ .43

19.8° 2.25+ .32

aValues at 0.8° are averages over all ¢.

360/65 time-sharing system.

The momentum acceptance of each arm was
approximately +30%. The rms momentum reso-
lution was 10 MeV/c and was dominated by mul-
tiple scattering. The angular acceptances were
1° in the horizontal direction and 2° in the verti-
cal direction.

A time-of-flight system with an rms resolution

of 0.55 nsec was used to separate a large back-
ground of accidental arm-to-arm coincidences.
This background was analyzed in order to cor-

ret¢t the data for those accidentals which could

not be separated.

We separated the 7*% channel from other final
states by computing the mass of the undetected
particle(s). A typical missing-mass-squared
spectrum after subtraction of accidentals is
shown in Fig. 2; the rms resolution is 0.03
GeV2, Only events within 0.12 GeV? of the neu-
tron peak were analyzed to obtain the results
presented in this Letter.

Corrections were made for the following:
chamber recovery deadtime (4 to 48%), radia-
tive processes® (=29%), target bremsstrahlung’
(=15%), pion decay (4 to 12%), pion absorption

(3'to 6%), pion pair misidentification (0 to 10%),
scattering from magnet poles (2 to 5%), target-
empty rates (=1%), counter deadtimes (=1%),
chamber and counter inefficiencies (=1%), and
other small effects. Uncertainties in these cor-
rections result in a possible systematic error of
=5%.

Data from the 8, W, and ® scans are present-
ed in Tables I, II, and III, respectively. The
data are tabulated in terms of virtual photopro-
duction cross sections, as defined by Eq. (1).
All are quoted with statistical uncertainties only.
Except for the angular scan in Table I, there is
a high degree of correlation between values of
W, k% €, and @ for each spectrometer setting.
This is a consequence of the strong dependence
of the virtual photon’s momentum, direction,
and polarization upon the momentum of the de-
tected electron.

One may draw several rather general conclu-
sions from these data. The W dependences at
fixed 6 (Table II) are consistent with an absence
of strong resonance effects. A significant fea-
ture of the £® scan is the initial rise of the 0°
cross sections with increasing -%* (Table III).
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Table II. W dependence of small-angle virtual-photo-
production cross sections. Uncertainties are statisti-
cal only,

Table III. &2 dependence of small-angle virtual-pho-
toproduction cross sections. Uncertainties are statis-
tical only.

2 2

° k“ = -.,29 Gev

o® <6 5 2.4°

dg_ub
W(GeV) a0 (sr) e
1.84 12,81+.83 .94
2.05 9.68+.61  ,92
2.14 8.69+.35 .89
2.50 4,99+,17 .73
2
2.4° < 6 54.8° ¢ ~0° k%= -.30 Gev
do_ub
= 2
W (GeV) dQTr(sr) e cosQ cos29
1.79 14 .47+.94 .95 .83 .44
1.98 11.80+.70 .93 .84 .47
2,07 11,31+.44 .91 .86 .55
2.41 7.91+.26 .78 .87 .60
' 2 2
2.4° s 0 54.8% ow~180° k° = -.28 Gev
do_ub.
e 2
W(GeV) an (sr) 2 cos® cos29o
1.90 10.65+.73 .94  -.83 .42
2,12 6.92+.55 .90 ~-.83 A1
2,22 5.63+.32 .86 -.84 .45
2.60 2.26+.15 .68 -.88 .58
2 2
4.8° < 0 5 9.6°% 9~0° k° = -.31 Gev
do_ b,
= 2
W(GeV) dQ—rr(sr) € coso® cos29
1.74 14.52+.68 .9 .91 .67
1.92 10.35+.47 %4 .92 .73
2,01 10.71+.32 .92 .4 .79
2.31 6.76+,30 .82 .97 .87
2 2
4.8° s 0 5 9.6° o~ 180° k° = -.26 Gev
4o pb
W(GeV) 3o (sr) > cosQ cos29Q
1.9 9.20+.44 .93 -.90 .63
2.20 4.39+.,33 .88 -,93 .75
2,31 4.,41+.,24 .85 -.,94 .78
2.71 1.90+.20 .61 -.98 .91
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0° <o < 2.4° W= 2,15
kZ(GeVZ) e “d%g;(ub/sr)
- .176 .853 7.18+.34
- 2% .880 8.28+.45
- .3% .870 9.09+.35
- .795 .830 7.02+.37
-1.188 .788 3.55+.28
2.4° < 9 < 4.8° o ~ 0°
cos® ~ .87 cos29 ~ ,56
k2 (Gevz) W(GeV) e %mb/sr)
- .189 2,070 .878 10.25+.47
- .308 2.083 .896 11.51+.57
- 411 2,088 .886 11.12+.44
- .825 2.09 .844 6.51+.40
-1.232 2,110 .802 4.06+.35
2.4° < 0 < 4.8° ¢ ~ 180°
cosp ~ -,84 cos2¢p ~ .47
kZ(GeVZ) W (GeV) ¢ Ed{%(ub/sr)
- .166 2,226 .822 3.48+.32
- ,281 2,224 .856 5.43+.,42
- .379 2,218 .850 6.85+.34
- .768 2,203 .814 5.74+.38
-1.144 2,208 .770 3.70+.33

This cross section has the form A +€C, where
the scalar contribution C must vanish as #%-0.
If, as is plausible, the purely transverse part A
monotonically decreases with —?, then our re-
sults imply a significant scalar component.

(The data are not plotted because of the variation
of € from point to point.)

Just how large the scalar component actually
is must be determined by utilizing some specific
model. For those models which include a contri-
bution from a #-channel pion pole, the size of
that component is related to the pion form factor.
One may thus hope to extract the latter in a mod-
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el-dependent way. For this procedure to be
meaningful, such a model must be able to repro-
duce our observed angular distributions (Table I).
In particular, the most sensitive test our data
can provide is the requirement that a model pre-
dict the correct interference term, D, because
that term involves both scalar and transverse
amplitudes.

A detailed comparison with a particular model
is given in the following Letter.?
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New data on forward 7* electroproduction are in reasonable agreement with the pre-
dictions of a dispersion-theory calculation by Berends. This model is used to extract
the pion electromagnetic form factor. The result is consistent with Fr=F", but a sim-~

ple p-pole form factor cannot be ruled out.

High-energy 7" photoproduction has shown re-
markably simple behavior in the region of small
momentum transfer.! The data are qualitatively
described by Born terms, and are well fitted by
including corrections based on low-energy behav-
ior.>® This approach has been extended from
real to virtual photoproduction by Berends.*

In the preceeding Letter,® we obtained cross
sections for the virtual photoproduction of single
7* mesons by analyzing data on the electropro-
duction reactione " +p-—-e~ +7* +n, In that Letter
Berends’s predictions are compared with our
measurements, Conventions and notation will be
those of Ref. 5.

The amplitudes constructed by Berends contain
the pion- and nucleon-pole terms (the “general-

ized Born approximation”) and a fixed-¢ disper-
sion integral. The amplitudes are assumed to be
isovector and purely real for our energy region,
and only the M, .* multipole of the A(1236) is in-
cluded in the integral. With these assumptions,
the pion form factor, F,(k?), is the only free pa-
rameter in the theory. For -¢{<3m,2 and W>2
GeV the theory agrees reasonably well with real-
photoproduction data.®

Figure 1(a) shows the angular distribution of
our data at W=2.15 GeV, %k%=-0.396 GeV? and
€=0.87 for ¢ =0° and ¢ =180°. The curves repre-
sent Berends’s theory with F, =F,” (=0.566 here).”
Fits have been made to these data with F as a
free parameter. If angles up to 7° (¢= -m 2) are
included, F,"gives close to a best fit, with a x?
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