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responding to vortex spacings of 6.8 to 3.4 pm)
is consistent with the above peak structure.

Thus on the present sample both the micro-
scopic measurements with the atomic beam and
the macroscopic measurements with the voltage
probes indicate that the expression pf = p„(B/H„)
is not valid. However, the more fundamental
relation E = v XB/c which is not measured by the
macroscopic measurements is consistent with
the microscopic data.

Future measurements in which both the voltage
drop across the sample and the internal magnetic
field are measured in situ should allow us to in-
vestigate further some of the questions which the
present experiments raise but do not answer.
These include the washing out of the peaks in the
relative transition probability when a current is
flowing, the independence of the resistivity to
magnetic field, the lack of signals at higher
fields, and the occasional nonconstant velocity
shift when a current is flowing. This latter
should be particularly interesting since the prob-
able explanation is a large Hall voltage which
causes the lattice to flow at an angle to the atom-
ic beam. In addition, we plan to observe samples
for which the expression p&

=p„(B/H„) is valid.
We hope these experiments will allow a micro-
scopic check of the present theories of flux flow.

In conclusion, we feel that the first application
of this method demonstrates some of its inherent
possibilities. For example, merely by changing
our beam from potassium to cesium we should
be able to observe periodicities down to 100 A.
Further applications might include the study of

how vortices are created and destroyed at the
edges of a superconductor, possible collective
motions of the vortex ld, '.tice, fluctuations near
the Curie point in a ferromagnet, domain bound-
ary motion in ferromagnets, etc. A further possi-
bility would be to observe electric fields in much
the same manner using a beam of molecules
which are sensitive to oscillating electric fields.
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We consider the problem of interacting particles occupying random sites on either a
plane square or a simple cubic lattice. The critical concentration p is defined as that
concentration below which the cooperative transition which normally occurs in the sys-
tem can no longer take place. In this paper we obtain an expression for pc as a function
of the interaction range r, exact when r" »1 (d =dimensionality, r measured in units of
lattice constant).

The study of the statistical behavior of inter-
acting particles which occupy randomly a frac-
tion p of the sites of an otherwise empty lattice
is of interest for two reasons. First, the prop-
erties of such systems may shed some light on

the nature of cooperative phenomena in fully oc-
cupied lattices. ' Secondly, these random sys-
tems are related to problems involving substitu-
tional defects in regular crystal lattices. For ex-
ample, QH ions may replace halide ions in alka-
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li halide crystals, ' creating random dipolar im-
purities. Transition-ion impurities in noble met-
als comprise a similar magnetic problem. '

Because of the incx eased mathematical diffi-
culties involved in the treatment of random sys-
tems, results in this area have been Limited.
Rigorous theorems concerning the properties of
the various thermodynamic functions fox random
systems have been proved, ' and very dilute sys-
tems have been studied by diagrammatic expan-
sions. ' Also, Griffiths' has shown that in a, ran-
dom Ising system, the magnetization ceases to
be analytic at a temperature greater than the as-
sociated critical temperature.

Another aspect of the problem involves the de-
termination of the critical concentration P„ the
concentration below which the cooperative transi-
tion which normally occurs in the system cannot
take place. Numerical estimates of p, have been
obtained for Ising models on several types of lat-
tices, ' and certain inequalities for p, have been
derived. ' Exact values of p, have been obtained
for two-dimensional triangular and honeycomb
lattices, ' and for several pseudolattices. "

In this note, we wish to report a rigorous eval-
uation of P, as a function of the interaction range
r valid for r'»1 (d =dimensionality, r measured
111 ulllts of lRttlce constR11't). Tile Rppl'GRcll we
utilize involves an evaluation of the radius of con-
vergence of the zero-temperature susceptibility
series in the concentration P, derived for Ising
and Heisenberg ferromagnets by Rushbrooke and
Morgan. " This radius of convergence is just p,
since at p =p, the phase transition, with associat-
ed divergent susceptibility, occurs at T =0.

Fol simplicity we conside' a system of Ising
spins interacting via the ferromagnetic Hamil-
tonlan

H = QV;, (r)p, g-, +H, Qp&,
i&/ i

where, as usual, p, ; =+1 and r is the range of
the interaction. That is, the interaction between
two spins is identically zero if they are mox'e
than r lattice constants apart. Very close to T
=0, the magnetic susceptibility in zero field may
be written a.s a sum over clusters" of spins in
the form"

where the sum includes all possible distinct" n-
particle clusters which can be found on the lat-
tice, N„, is the number of clusters of type I;„,
and P is the reciprocal of Boltzmann's constant

times the tempexature. The n' term is the sus-
ceptibility of an n-particle cluster at T =0, with
the magnetic moments implicitly included. If the
sites are randomly occupied, then there is a
probability p that any given site contains a spin,
and a probability 1-p that a site is vacant.
Therefore, N„, is given by the expression

where v„ is the perimeter of the cluster, i,e.,
the number of vacant sites within a distance r of
at least one of the occupied sites. It follows that
two clusters are distinct if and only if their pe-
rimetexs are different, and the sum over t„ in
Eq. (2) can be written as a sum over v„ in the
form

(4)

We shall detexmine the radius of convergence
of Eq. (4) by finding radii of convergence R," and
R,' for power series in P which bound Eq. (4) be-
low and above, respectively. Then it will be seen
that, when r~»1, R, ' =R,". The calculations
will be performed for simple cubic (SC) and
plane square (PS) lattices only, but the same
methods may be applied to more general lattices.
To this end we note that for sufficiently small p,
Eq. (4) is bounded by

Q n 2p tl
(1 p)

P ~(Ill 8x )

-.Z"p"Z(1-p)" -.E 'p"M(n, ),

where M(n, r) is the number of distinct n-parti-
cle clusters, and v„(max) is the maximum perim-
eter size. As p increases, as long as all the
series converge, the inequalities remain valid.
Thus the first series to diverge must be the ser-
ies on the right, and its radius of convergence
is a lower bound for p, . Similarly, the radius
of convergence of the series on the left is an up-
per bound for p, .

We now examine the series in Eq. (5) to find
these bounds. In order to obtain v„(max) and
M(n, r), we first determine, for given interaction
range r, the maximum number of sites which are
available to an n-particle cluster, q(r). By this
quantity we mean the number of sites, occupied
and unoccupied, in the cluster in which each par-
ticle pair is the maximum distance r apart. If r
is measured in units of the lattice constant, then
q(r) for the PS and SC lattices is given by n
times the volume of a d-dimensional hypersphere
minus the overlap volume. This is illustrated
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write by expanding the (1—p)'"( '") term as

FIG. 1. The maximum number of sites for a c]uster
for d = 2. Occupied sites are shown by the large dots.
Lined areas are the overlapping parts, which are sub-
tracted from n~r to give a, (r) .

for d = 2 in Fig. 1. From elementary calculus we
have then

z(-i)"( -i)*z(", ) . (i~)
m —k=o i=0

The radius of convergence of this series is found

by factoring the maximum combinatorial term
out of a . The remaining terms may increase
at most like some power of m. But since

q(r) =na, (r),

where"

a, (r) =r'(~g +-,'v 3),

a, (r) = r'(24—,')T--,' &3).

(6) lim (m') " =1,
m~ o

the limit in Eq. (13) will be determined by the
limit of the maximum combinatorial term as m

From Eq. (13) this term is

k k l(j-k) I
'

Substituting these results into Eq. (5) we obtain

pn2p (1 p)n[n~(r)-x]

-.Z"p"Z(1-p)" -.E"p" na, (r)
1/ ~ 8 n

(10)

To evaluate the radii of convergence of the ser-
ies above we use the Cauchy test" for conver-
gence of a power series,

R, = lim sup I&„l "",

where a„ is the coefficient of x" and R, is the ra-
dius of convergence. Applying this test to the
series on the right in Eq. (10), we obtain

From our earlier definition of perimeter, v„(max)
is just the perimeter of this maximum cluster,
namely

v„(msx) =na„(r)-n.

Furthermore, an upper bound for M(n, r) is giv-
en by the number of ways one can place n objects
on the r}(r) available sites,

(ma, (r))

where

(v„(max))

and therefore the radius of convergence is given
by

1
R, — —

)
(r»l). (14)

Equations (12) and (14) allow us to conclude that
for x»1,

p, =1/a, (r). (15)

We point out here that the above result is pure-
ly a property of the underlying lattice structure,
and in particular does not depend on the exa,ct
nature of the cluster susceptibility functions, so
long as these quantities do not increase as n".
Thus Eq. (15) should apply to paraelectric de-
fects in alkali-halide crystals and other such
systems. In these materials the pure dipole-di-
pole interaction is shielded by correlations be-
tween defect and host. Qur results, coupled with
experimental determination of p„would yield
an estimate of this shielding.

The author wishes to thank Professor B. Gale
Dick for introducing him to the random-para-
electric-defect problem and for comments on
the present work. Thanks are also due to Dr. H.
B. Rosenstock and Dr. J. W. Shaner for helpful
conversations.

na, (r) "" 1
R, =lim n

n a(r) ' (12)

where Stirling's formula has been used to evalu-
ate the combinatorial term. We now consider
the series on the left in Eq. (10), which we re-
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We report the first definite observations of the magnetic field dependence of central-
cell corrections in shallow donors. Exploiting the extreme resolution inherent in mag-
netospectroscopy employing infrared gas laser sources, we have observed previously
unresolved transitions arising from four distinct "hydrogenic" donor species occurring
in high-purity epitaxial GaAs. W'e show that the speciesMependent differences in transi-
tion energies are directly proportional to the probability of finding an electron at the
donor site to which it is loosely bound. This probability increases with increasing mag-
netic field because of magnetic squeezing of the wave function of the bound electron.

Recent magneto-optical studies" of the 1s-2p
donol' tlansltlons ln epltaxlal Pl-GRA8 demon-
strate that the donor states involved are hydro-
genic to within experi. mental accuracy. %e have
re-examined some of these transitions both in
photoconductivity and transmission in experi-
ments of much higher resolution and with very
precise magnetic-field measuring capability in
order to check critically the limits of vali. dity of
the effective-mass-hydrogenic-atom model for
GRA8 donors. We find that undel high resolution
the absorption and photoconductivty previously
ascribed to a single donor is actually made up
of foux' closely spaced pl evlously unx'esolved
transitions, each arising from a different donor
species. The existence of these hyperfine sepa-
rations (hfs) (of the order of 0.5 cm ') in the 1s-
2p transition cannot be understood from the hy-
drogenic isolated-donor model even when correc-
tions for band nonparabolicity are introduced.

Thus splittings offer a unique opportunity for in-
vestigating perturbations on the simple hydrogen-
ic-donox' impurity model.

The most direct evidence for our claim that
the hfs arises from small variations in the 1s-2p
transition energies for different donor species
present in our samples comes from the observa-
tion that the hyperfine peaks change in relative
intensity but not in energy from sample to sam-
ple. Study of the hyperfine separations in differ-
ent optical transitions shows that these spacings
are attxibutable to differences among donor
ground-state energies. Analysis of the field de-
pendence of the hyperfine separations indicates
that the perturbations giving rise to the observed
relative shifts in the ground-state energy are
(1) of short range compared to the hydrogenic
Bohr radius ao and are (2) centered either at or
very near to the donor site. The observed be-
havior with magnetic field of the hyperfine sepa-


