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Effects of Lateral Substrate Fields on Helium Monolayers*
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Heat capacities of He monolayers on graphite show qualitative differences between He3

and He4, contrary to the usual theories of tv'-dimensional quantum gases. %e attri-
bute the differences to weak lateral fields due to substrate inhomogeneities, and using
a two-dimensional ideal-gas model show qualitative agreement between theoretical
and observed heat capacities.

Pronounced peaks in the heat capacities of sub-
monolayer He' films on gxaphite have been ob-
served by Bretz and Dash. ' The heat capacities
of similar He' films do not display similar- be-
havior. Such results immediately invite specula-
tion on the occurrence of a Bose condensation in
the He4 film. This possibility has received much
attention in the last few years. It has been well
established that Bose condensation, defined by
the macroscopic mean occupation of a single-
particle state, can be excluded at finite tempera-
ture in an infinite two-dimensional system in
which the density is everywhere bounded. " It
is likewise well established that such a condensa-
tion cannot be excluded in a finite two-dimension-
al system. 4 In this Letter we present arguments
against the relevance of finite geometrical effects
in the recent experiments, and we propose an
alternative mechanism fox the observed behavior.

A uniform, two-dimensional, ideal Bose gas
of finite area A exhibits a condensation as defined
above at a temperature which is given approx-
imately by

where n=N/A is the areal density. Assuming
that the order of magnitude of the transition tem-
perature in a He monolayer can be estimated
by the above expression, one finds with A = 240

o

m ' and n = 0.026 A ' (parameters appropriate
to the x = 0.255 monolayer coverage film of Ref.
l) that T,=0.02'K. This is two orders of magni-
tude smaller than the temperatures correspond-
ing to the observed peaks i.n the He' heat capa-
city. Alternatively, if we assume that the film
is actually composed of much smaller regions
(presumably because of cracks and major im-
perfections of the substrate), we find that the
characteristic dimensions of the individual re-
gions must be 10 A in order to produce T,'s
comparable to the observed peak temperatures.
However, x-ray diffraction studies of the sub-
strate material yield Iinewidths coxxesponding

to crystallite dimensions greater than 400 A

and optical examination indicates that the graph-
ite planes are ordered over as much as 104 A.
It appears unlikely, therefoxe, that the specific
heat is si.gnaling a condensation due to the finite
size of the sample.

Another possible explanation of the experimen-
tal results, which is exploxed more fully below,
can be summarized as follows. Vfidom' has
sho~n that an ideal, two-dimensional Bose gas,
in the pxesence of external fields, can exhibit a
condensation at finite tempex atures even in the
thermodynamic limit. The density, however,
become s unbounded somewhere in the system at
the critical temperature. ' Presumably, inter-
particle interactions, which will sex ve to restore
a finite density everywhere, will cause the tran-
sition and associated singularities in the heat
capacity to vanish. Howevex, it is to be expected
that an increase of heat capacity with decreasing
temperature will remain as a remnant of the
ideal transition. Further, the data of Ref. 1 in-
dicate that the submonolayer systems behave
like ideal gases at high temperatures. Thus one
expects the heat capacity of the intex acting sys-
tem to be well approximated by that of the ideal
system down to temperatures in the immediate
vicinity of the ideal critical temperature where
the increase in density somewhere in the system
makes it necessary to include effects of inter-
particle interactions.

As to the origin of the external fields them-
selves, %idom considered the cases of rotation
and gravitation. In the monolayer experiments,
these field sources may be completely neglected.
However, we consider a third possibility which
appears to be present in virtually all experimen-
tal films. These are the lateral fields arising
from substrate inhomogeneities, which cause
the adatom-substrate binding to vary from point
to point along the surface. Indeed, the qualita-
tive differences between the present experiments
and previous studies is attxibuted to the strong
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inhomogeneities of substrates previously used
and the closer approach of the graphite surfaces
to the uniform ideal. But it is reasonable to ex-
pect that the gxaphite has some residual inhomo-
geneity, and in the following we outline a calcu-
lation indicating that even quite small fields have
a profound effect on the Hose system.

Consider a two-dimensional ideal gas adsorbed
on a substrate of ax'ea mB2 and subject to a mac-
roscopic inhomogeneity in the substrate potential.
The properties of such a system may be obtained
from the quasiclassical appxoximation to the
distribution in phase space:

d'pd'r (3+ 1)
2(2m@)' expP[P(p, r)- p.]+1'

where the plus (minus) sign is taken for Fermi
(Bose) stRtls'tlcs Rnd H(p l') ls tile clR881CR1
Hamiltonian of the single paxticle. The above
approximation is derived fox the Bose system
by wx iting the logarithm of the grand partition
function as

lnZ = -g, lnll-exp[-p(E; —p)g,

where the E,. ax'e the eigenvalues of a single par-
ticle in the potential V due to the inhomogeneity.
Following Vfidom, we expand the above as InZ

=Q, "n 's" "Q(nP}, where Q(nP) =g, exp(-t)E,.)
is the single-paxticle partition function in the
canonical ensemble evaluated at an effective
temperature T/n, T being the temperature of
the Bose system. This quantity can be expanded
as a power series in 0, with the leading term
being the single-particle classical partition func-
tion. ' The higher-ordex terms involve classical
averages of derivatives of the single-particle
potential and may be neglected as V is taken to
vary over macroscopic distances. Substituting
the classical single -particle partition function
into the expansion of lnZ and interchanging or-
dex's of summation and integx'ation yields

lnZ = —
J ln/l-expP[p, -H(p, q)]J.

cPpd g
(2wh)'

The quasiclassical distribution of Eq. (1) for the
Bose system immediately follows fxom the ap-
propriate derivative of the above result. The
derivation of the Fermi result makes use of the
same expansion in 8' although the grand pax'tition
function itself rather than its logarithm is used
to generate an expression in terms of Q. The re-
sult is the same as Eq. (2) except for a spin fac-
tor of 2 and a plus sign preceding the exponential

~ 2.0

l.5

I.o

0.5

IQ

"05 /k =Q. I' V/k=0. Ql

I I I I
I I I

I 4 t

w('K) T('K)
The behavior of &+/&& (dashed 1iue) and ~ /Ã~ (solid line) for four values of V(R). The average density

is 0.026 A 2.
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and integrals. For definiteness we henceforth take the potential due to the inhomogeneity to be harmon-
ic: V(r) = ,E—x',r' =x'+y'. In this case the density n, (x), average density n„and heat capacity at
constant area C, axe7

n, (r) =+(3+1)(2X ) 'In(1 +exp[-P(&Ax -p)D,.—,=(2~ 1)(»'~) '9'., (~)-~., (~+&)],

(3 + 1) [6F ( ) 6p ( + [) 4gZ ( + g) (IF ( + g))
[2+ad(+) 2+1'(™+$) 'Kg&(+ ()1

In the above equations, A. is the thermal wave-
length h(2mmkT) '", g=PV(R), o'. =-Pp, , and
I", are the usual Bose and Fermi functions de-
fined by

&.,(o) = I '(&)I dry '[exp() + ~) + I] '.

The Bose gas condenses below a critical temper-
ature T, given implicitly by the relation

n=(A, '&,) '[F, (0)-E, (&,)].
For $,«l, the critical temperature is given by

T,=(2 @xn/km)(l+In[2vh n/mV(Z)]) ~.

Below T, it is undex stood that the expressions
for n (r), n of Eqs. (3) and (4)„refer to the un-
condensed phase. As 7, is approached from
above, the derivative of the specific heat C di-
verges and the density at the origin becomes un-
bounded, as is seen from Eq. (3) with p set equal
to zero. At high temperatures both heat capaci-
ties behave as C, -1+V (B)/12(kT)'. As C, van-
ishes linearly with T, the inhomogeneity mani-
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fests itself in the Fermi system by a maximum
in the specific heat.

In Fig. 1 we show C, /Ãk and C /Ãk for several
values of V(B) and with n =0.026 A ' (which,
again, corresponds to the fractional monolayer
coverage x=0.255 of Ref. 1). In Fig. 2 experi-
mental data from Ref. 1 are compared with C /
Nk evaluated with the same average density and
V(R)/k =1'. For purposes of orientation, at T

1.5 the density at the origin as obtained from
Eq. (3), is n (0) =0.06 A' which corresponds to
an interparticle sepax ation which is more than
1.5 times as large as the heli. um har. d-core diam-
eter. The density n, (0) does not attain the above
value at any temperature with the above param-
eters.

Clearly one could obtain a better fit to the
data by altering the shape and strength of the
potential as weII as including the effects of a
distribution of such inhomogeneities. However,
our object has only been to show that the pres-
ence of physically reasonable lateral fields pro-
duces a significant distinction between the be-
havior of two-dimensional Bose and Fermi sys-
tems of the kind observed experimentally.
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FIG. 2 Experimental data compared with C /&& with
V(R)/& =1 and average density of 0.026 A 2;
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It is interesting to note that the same expressions
are obtained for a potential V(x, y) =~ if $ is replaced
by PV(l-, y), where L is the length of the system.


