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in the experiment with ethyl alcohol (¢,/7 =2.0)
is drawn through the experimental points. The
calculated curve fits our data quite well at £,=0,
at the position of the maximum, and also for
larger values of {,. The comparison with theory
confirms the dephasing time of 7 =4 psec. It

is interesting to compare this value of 7 with
measurements of the spontaneous Raman line-
width. Earlier data suggested a value of Aw/c
=10 cm ™!, More recently the isotope structure
of the Raman emission in CCl, has been resolved
and Aw/c=1.5 cm ™! was reported for the most
prominent Raman line.*® Quite obviously our ex-
perimental dephasing time of 7=4.0+0.5 psec
corresponds to the width of the individual isotope
components of the Raman line.

Finally, we wish to emphasize once more the
importance of knowing the shape (the wings) of
the laser pulse. The determination of a dephas-
ing time of 7 =4 psec with a probe pulse width
of ¢, =8 psec requires rapidly rising (Gaussian)
pulses. Calculations show, for example, that
with a Lorentzian pulse of the same duration
(t, =8 psec), only 7 values larger than ~80 psec
can be measured.

Investigations of the type discussed here are
readily extended to other media, to compressed
gases and especially to solids where TO phonons
(e.g., in diamond™) and internal vibrations (e.g.,°
in CaCO,) have been excited by stimulated Raman
scattering. Using two incident pumping beams
with the proper frequency difference, it will be
possible to excite molecular and lattice vibra-
tions with smaller gain factors.

The authors wish to acknowledge valuable dis-

cussions with Dr. M. Maier.
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A simple lattice gas, of the familiar kind with only short-range pair interactions, is
proved to have a coexistence curve whose diameter is singular at the critical point.
Particle-hole symmetry is violated only because the range of interaction energies a
molecule can experience depends on which of two nonequivalent sets its'lattice site be-

longs to.

Theoretical analysis has cast doubt on the va-
lidity of the law of the rectilinear diameter,
which asserts that dp,(T)/dT is asymptotically
constant at the liquid-vapor critical point {p,(T)
=3[py(T) +p,(T)]}. Three models have now been
described with diameters reflecting the constant-

volume specific-heat singularity® 3:
dp,(T)/dT ~ const Xc,, T~T,. 1)

One can argue that each of these models is
atypical. That of Hemmer and Stell! is one di-
mensional, requires forces of infinite range, and

957



VoOLUME 26, NUMBER 16

PHYSICAL REVIEW LETTERS

19 ApriL 1971

yields the singular diameter only for special val-
ues of the interaction parameters that result in
the coalescence of two classical critical points.
The penetrable-sphere model® has a short-range
interaction which requires, however, 2-, 3-,
+++, N-body interactions for its representation.
The bar model® interaction is a sum of short-
range four-body potentials.

Although models with short-range pai» interac-
tions are perhaps as much hallowed by tradition
as required by physical reality, the presence of
a singular diameter in such a model would throw
into sharper focus the problems raised by the
existence of such singularities. It is therefore
important to note that there are, in fact, many
lattice-gas models, interacting only through per-
fectly ordinary short-vange pair potentials,
whose diameters carry the specific-heat singu-
larity, as in Eq. (1). We describe here an espe-
cially simple case.

Take an ordinary two-dimensional lattice gas
on a square lattice, with only nearest-neighbor
attractive coupling of strength ne, (We use the
dimensionless parameter 7 to measure the
strength of the coupling.) Number the rows and
columns of lattice sites 1,2,3,:++. We now 7re-
move (or forbid occupation of) those sites whose
row and column numbers are both even (even-
even sites). Finally, it is instructive (but not
necessary —\ may be zero) to introduce an addi-
tional attractive coupling of strength A€ between
molecules occupying nearest-neighbor sites in
the sublattice of odd-odd sites.

Note that this lattice gas does not have particle-
hole symmetry, because it has two kinds of sites:
Odd-odd sites have coordination number 4, and
odd-even sites have coordination number 2, On-
ly when n=-2X does a particle-hole transforma-
tion map the model onto itself; when n# —2x, the
particle-hole transformation leads to an addition-

al nonuniform external field.

The model can also be described as one in
which the ordinary lattice gas with attractive
nearest-neighbor coupling A€ that occupies the
odd-odd sites has been augmented by a set of
sites on nearest-neighbor bonds (the odd-even
sites), and by the addition of an attractive inter-
action of strength ne between a molecule on an
odd-even site and either of its two neighbors on
odd-odd sites. From this point of view, the mod-
el is nothing more than a lattice-gas version of
the decorated Ising models discussed by Fisher
over ten years ago.* Following Fisher’s analysis,
we can easily express the grand partition function
of the decorated lattice gas, =(¢,K), in terms of
the grand partition function = (€, K) of the ordi-
nary nearest-neighbor square lattice gas, with
attractive nearest-neighbor coupling of strength
€ (we use dimensionless variables { = /T, T
=1/ksT, K=€/kgT, K=—€/kyT):

E(@E,K)=(1+e*YZ( K), @)

where N is the number of sites in the ordinary
lattice gas (so that the decorated lattice gas has
3N sites) and

- 1+e§””‘]
§(€,K)=§+4ln[—m ’

_ 1 S L+2nk
K(E,K):AK+1nl:( +(i_3(el§-tflf)2 )] (3)

Below the critical temperature, the ordinary
lattice-gas density is discontinuous across the
coexistence line £(K)=-2K. The coexistence line
for the decorated lattice gas is therefore given
by

1 +el&)+ank
§(K)+2AK+21nwr =0. (4)

By calculating from (2) the mean occupation
number per site in the decorated lattice gas, on
opposite sides of the coexistence line, one finds
that

Pa(K) = 2[1+e™ 0] 1 Ly R K)N (9T /08 )¢l = iy + 20 B ENN(BK /88 i) = e » (5)

where K (K) is defined by
K(K)=K(((K),K) (6)

and —ew, = 3@, +@y), where & is the mean energy
per site of the ordinary lattice gas.

The particle-hole symmetry of the ordinary
lattice gas establishes that p, =3 and 0,(K) =@ (5,
K). The K derivative of @, therefore diverges
logarithmically at the critical point, and so will
the K derivative of p, provided that this is the on-
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l ly divergence that differentiation with respect to

K introduces on the right-hand side of Eq. (5),
and provided that (8K/8t), does not vanish at the
critical point.

The first proviso is readily verified (i) from
the fact that the first and second derivatives of
the mappings (3) are all bounded, (ii) from the
boundedness of d¢(K)/dK that (4) implies when the
coupling is attractive, and (iii) from the bounded-
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ness of dK(K)/dK that follows from (i), (ii), and
Eq. (6). That (8K/8¢), does not vanish at the
critical point follows from the mapping (3) and
the form of the coexistence line (4) except in the
case 71=0 (where the odd-even sites are decou-
pled from the odd-odd), and in the case n=-2x
(where particle-hole symmetry is restored).®

Thus in the decorated lattice gas, the lack of a
singular diameter clearly emerges as an acciden-
tal consequence of particle-hole symmetry,
which causes the coefficient of the singularity to
vanish. This lends considerable support to the
conjecture®? that the rectilinear diameter of the
conventional lattice gas is, in fact, the atypical
case, found only in models with the artificial par-
ticle-hole symmetry. To test the conjecture fur-
ther, it would be interesting to know, for exam-
ple, whether a singular diameter would emerge
if, instead of prohibiting occupation of even-even
sites, we had merely changed the strength of
their coupling (thereby destroying particle-hole
symmetry). Or, would a lattice gas in which the
horizontal coupling constant alternated in value
from row to row have a singular diameter?
These are hard questions to answer, but it may
well be that the remaining peculiarities of models
known to have singular diameters reflect only our
inability to answer more than a few hard ques-
tions, rather than any lingering shreds of the law
of the rectilinear diameter.

Indeed, the somewhat stronger conjecture that
(1) holds whenever there is no symmetry to pre-
vent it has considerable explanatory power. Thus
continuum systems (which ipso facto lack parti-
cle-hole symmetry), with classical critical
points, have finite heat capacities at T, and, as
implied by (1), nonsingular diameters. The sin-
gular diameter discovered in Ref. 1 has its pecu-
liar setting because it occurs in a model with in-
finite-range forces and a classical critical point.
Hemmer and Stell must therefore make the short-

range part of their interaction complex enough to
yield a new kind of classical critical point, pos-
sessing a singular specific heat, before (1) im-
plies a singular diameter,

I am indebted to V. Ambegaokar for a thought-
provoking murmur, and to an unidentified shop-
keeper of ancient Ostia for a pertinent and sug-
gestive floor mosaic. I have had helpful conver-
sations with C. di Castro, M. Vicentini-Missoni,
and especially J. Rehr, and have exchanged let-
ters and telegrams with B, Widom. I am most
grateful to the John Simon Guggenheim Memorial
Foundation for financial support, and to the mem-
bers of the Physics Department of the University
of Rome, for their kind hospitality.
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