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We identify a small dimensionless parameter gz associated with the triple Pomeran-
chon vertex, which governs both the rate of high-mass diffractive dissociation process-
es and the fine structure in the J-plane spectrum near J=1. Theoretical arguments are
given that g~ & 1-ez(0), and a possible experiment to measure gJ, is discussed. A formu-
la for gz, based on a multiperipheral model, shows that in such models this parameter
does not vanish, and a connection of qz with a perturbation formalism for the Pomeran-
chon propagator is suggested.

The apparent conflict between two descriptions of high-energy production processes, namely "dif-
fractive dissociation" and "multiperipheralism, " has been widely noted. ' Chew, Rogers, and Snider'
have shown that these concepts could be unified by splitting the kernel of a multiperipheral integral
equation into a low-energy or resonance part and a weak Pomeranchuk component. In this paper we

sharpen the issues involved and reduce their model dependence by defining an experimentally measur-
able parameter 7)P, which determines both (1) the probability of diffractive dissociation into large
masses and (2) the strength of the logarithmic branch point in the "Pomeranchon propagator. "

We consider a collision of the type depicted in Fig. 1(a), where particle B dissociates into large
mass (s')"' with the same quantum numbers, while particle A merely recoils with momentum trans-
fer (—t)"2. In the limit when the total energy s"' is large, as well as s' and s js', many authorss have

argued that the differential cross section for this process should show the characteristic energy de-
pendence (s/s')'"P(' (s') P ', and DeTar et a/. , ' following the reasoning of Mueller, ' identified the co-
efficient of the energy dependence with a triple-Pomeranchon vertex. ' The cross section obtained by
summing over all the undetected hadrons of total mass (s')"' in the high-energy limit is described
symbolically by Fig. 1(b) where the link nP(0) results from the above summation. We set the scale of
our triple-Pomeranehon vertex by writing the spin-averaged differential cross section in question in
the asymptotic limit as

The normalizations of the Regge residues p are chosen so that

and

SQUAB

s ~ ~ PAP( )PBP(0)S

%ith this choice,

P„(0)P„(0)=im[P„(O)P, (0)].

The triple-Pomeranchon vertex, gP(f), has two legs at mass (-t)"' and the other at mass zero; see
Fig. 1(b).

The same quantity (essentially') enters the cross section for double diffractive dissociation in which

FIG. 1. (a) Single diffractive dissociation of A and
B to produce a large mass (s') ~ . (b) Emergence of
the triple Pomeranchon vertex, gP(t), as s' —~, s/s'

(a)
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both A and B dissociate into large masses (s")'" and (s')"', respectively, as shown in Figs. 2(a) and
2(b). With our normalization we find

Note that if different ways of grouping final par-
ticles into two clusters satisfy the requirements
on s' and s", a single event should be counted
more than once.

Although g~(t) is in principle determined by
either of the above two multiple-production pro-
cesses, the less experimentally accessible
double diffractive dissociation described by Fig.
2 and Eq. (5) is more directly related to the im-
portant dimensionless parameter g~ which we
now introduce. The vertex functions P and gz(t)
are not dimensionless; however at i =0, if c.~(0)
=1, the quantity

1 1

16m 2o.~'(0)

is dimensionless. Furthermore, if we divide
Eq. (5) by the total cross section, Eq. (3), and
integrate over the diffraction peak in t, we find
that the Probability of double diffractive dissocia-
tion is given by

1 dc„, [s/s's "]"z") '
7)0'»'" dlns'dlns" ~ ln(s/s's" )

Formula (7) may be used to obtain the probabil-
ity distribution in the central (pionization) region
for large gaps between adjacent longitudinal ra-
pidities of produced particles. Identifying the
large rapidity gap as ~ - ln(s/s's"), and with at-
tention to the previously mentioned multiple
counting, we find

dp(~) (~)
6 large

where a~= 1-&~(0) and (6) is a "mean gap. "
More precisely, if the mean number of produced

(a)
FIG. 2. (a) Double diffractive dissociation of A and

8 tc produce large masses (s") ~ and (s') . (b) Regge
approximation to double diffractive dissociation as
s' —~, s"-~, s/s's" —~. Note the appearance cf
the one-loop correction to the Pomeranchon propagator.

n, = 2n~(0)-1 (10)

is the position of the Amati-Fubini-Stanghellini
branch point, and n~ is the position of the leading

! particles (or of gaps) increases as (n)-kins,
as predicted by multiperipheral theory, then
(~)-=k '.

With u~(0) = 1 (a~ = 0) and qz g0, formula (8)
leads to a contradiction because the upper limit
on A is of order lns. The integrated double-dif-
fractive probability then increases o. ln(lns) and
eventually exceeds unity. A corresponding dis-
aster occurs for the single diffractive cross sec-
tion of Eq. (1) which also grows ~lnlns. This is
the well-known Finkelstein-Kaj antic disease';
its cure is to assume either o.„(0)&1 or q~ =0.

Accepting the experimental indication that k
= 1, so that the mean value in the 4 distribution
is =1, it follows that the integrated probability
in the large-gap tail of the distribution not only
must be finite but much less than 1. Conserva-
tively defining the "tail" to be 4 ~ 3, we thus re-
quire

J (dP/da)da «1,
which with insertion of formula (8) leads to
r)z(b) ln(3az) '«1; since a+&0.03, one may be
confident that g~ «1. A sharper limit will be
obtained below.

The diagram depicting the double diffractive
dissociation process, Fig. 2, strongly suggests
the association of g~ with a single loop modifica-
tion of a Pomeranchon Regge propagator. Such
propagator concepts have been extensively dis-
cussed by Gribov and Migdal" (however without
the physical association with multipartiele pro-
duction processes emphasized here). Within the
framework of multiperipheral models where one
deals with "partial-wave" integral equations, the
Fredholm denominator D(J) is a natural candidate
for identification with a Regge propagator. It is
probable that this is a much more general S-
matrix concept. In any event, we have found for
a large class of multiperpheral models that

D(J) =J-c.„@~in(J-n, )
'—

when 4, a~, and ~, are all near unity. Here
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4-plane singularity when the Pomeranchon con-
tribution to the kernel is turned off; that is, q~
= 0 or no diffractive dissociation. Omitted from
Eq. (9) are nonsingular terms of order q~ and
terms of order (J-n„)' or smaller.

If the leading zero of D(J) occurs at J= l-a~,
so n, =1-2a» it is clear from Eq. (9) that a~=0
only when g~ = 0. Furthermore since phenomen-
ological analysis of high-energy data" tells us
that the strength of the Pomeranchon residue,
proportional. to

is not small compared to the size of lower vacu-
um singularities, we conclude that a~ is not a

great deal smaller than q~. By measuring g~
we will thus be able to predict the asymptotic
rate of decrease of total cross sections:

0'"(s)~s '~, a~= i)~.

Of course, it may transpire that @~=0. What
arguments can we adduce toward the vanishing
or nonvanishing of q~& Again we turn to multi-
peripheral models for a hint and are able to re-
port that within the context of an Amati-Bertocci-
Fubini-Stanghellini- Tonin (ABFST) structure
this parameter is nonzero. If the exchanged
mesons along the multiperipheral chain have
masses m,. and the kernel is deduced from elastic
unitarity contributions to (off-shell) m, , m,
scattering, we find

I'n 0 +1 u ( ~(0).xj]2
g (f) = P du[2(ut)"' sinhq. ]' &"'—

16s' t

with

coshq, . = (m,.'-f-u)/2(ut)"'.

Each term in the sum contributes a positive
amount at t = 0, so no cancelation is possible.
An estimate based on a solution of the ABFST
model of the off-shell vertex functions appearing
in Eq. (1S) leads to a value of g~(0) of the order
of 1 GeV ' and thus an g~ of about 0.02. These
calculations will be described in detail else-
where. "

A calculation of g~(t) in the context of the dual
resonance model has been made recently. '4 In
that model g~(0) vanishes; however, it also hap-
pens that at t =0 the Pomeranchon decouples
from all. integer spins. Given the prevailing
theoretical uncertainty concerning g~, there ap-
pears to be no substitute for a clean experimen-
tal measurement.

As already noted, the process of Fig. 1 and
formula (1) is far more accessible to experiment
than that of Fig. 2. In addition to less demanding
requirements on initial energy and on final-state
measurements, single diffractive dissociation
into large masses is proportional to the square
root of g~ and so may be of respectable magni-
tude even when g~ is extremely small. For ex-
ample, if we assume that the t dependence of
AB elastic scattering is roughly the same as
that of large-mass diffractive dissociation, we
may use the quotient of formulas (1) and (2),

1 d(x„s g~(0) 2n~'(0) "'
eI dl +i g+ tot 1P + tot ~

AB BB BB

Here we have taken n~(0) = 1, so that iP»(0) j
= Psp(0) = Eo'»'". Thus, if the dissociating parti-
cle has a high-energy total cross section (on it-
self) of the order 20 mb= 50 GeV ', and n~'(0)
= 0.5 GeV ', the ratio in question is of the order
vq~, easily measurable even if q~ is of the order
0.01.
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