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One-Dimensional Anisotropic Heisenberg Chain
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A formula is given for the minimum eigenvalue of the operator of an infinitely long,
one~dimensional anisotropic Heisenberg chain,

Until now the ground-state energy of the one-dimensional Heisenberg operator
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has been calculated only when either one of the parameters A, B, C is zero,! or two are equal.? We
sketch here the solution for arbitrary values of A, B, and C (in the limit of large N). The details of
the calculation will be presented elsewhere.®

In a previous Letter® we have outlined the solution of an “eight-vertex” model in lattice statistics.
It is known that a special case of this (the “ice” models®) is related to the Heisenberg chain with A =B.
We might hope that the more general lattice problem is related to the general Heisenberg chain prob-
lem, and indeed we find that this is the case.

To see this we use the notation of Ref. 4, where we set up a class of commuting 2¥-by-2¥ matrices
T(v). When v =7 it is quite easy to see that T'(v) is simply proportional to an operator that shifts all
arrows one column to the left. Regarding k and 1 as constants and differentiating with respect to v,
we can then deduce that
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where E is the identity operator and XC is given by (1) with
A:B:C =[1-F sn2(2n)]: [1 +& sn?(2n)]: [-cen(2n) dn(2n)]. (3)

For given values of A, B, and C we calculate £ and 7 from 3).

From (2) it is apparent that ¢ commutes with the matrices T (v) and hence has the same eigenvectors.
We assume (as seems reasonable from perturbation expansions) that when A is positive the eigenvec-
tor which corresponds to the maximum eigenvalue of T(v) (in the principal domain of Ref. 4) also cor-
responds to the minimum eigenvalue A;, of ¥C. Differentiating Eq. (9) of Ref. 4, we then obtain

2 poyi2] TN sinh?((7=A)n]tanh(na)
C*-B)Y ]EI_(_,,Z; sinh(2nT) ’ )

F(A, B, €)= im (2N) Ay =g ~[(C=47 +(
N—o>®
where K, 7, and A are defined in Ref. 4.

The formula (4) applies only in the “principal domain” 0<k<1, 0<x<7, i.e., |IBI<A<-C. However,
Amin iS unaltered either by any interchange of A, B, and C or by negating any two of A, B, and C, so
we can always ensure that this restriction is satisfied. (If we negate one or three of A, B, C, we in-
terchange A, and =i, 4.) We find that F is an analytic function of 4, B, C inside the principal do-
main and across the boundaries B=+A, but across C=-A it has a branch-point singularity of the type
exhibited in Eq. (11) of Ref. 4, T—T being replaced by C+A and u being given by

cosp =B/A. (5)
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