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differently in the two samples. Havever, the low value
of T~ we observe for both samples can only be attribut-
ed to error in our thermometer. %e used a german-

ium resistance thermometer calibrated by Cryocal,
Riviera Beach, Fla. , and were unable to check the
calibration later since the thermometer was damaged.
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The solution of the zero-field "eight-vertex" model is presented. This model includes
the square lattice Ising, dimer, ice, P, and KDP models as special cases. It is found
that in general the free energy has a branch-point singularity at a phase transition, with
a continuously variable exponent.

It has been pointed out' that many of the previ-
ously solved two-dimensional lattice models, no-
tably the Ising and "ice"-type models, can be re-
garded as special cases of a more general model.
Adopting the arrow terminology used by Lieb, '
we can formulate this model as follows: Place
arrows on the bonds of a sare, N-by-N lattice
and allow only-those configurations with an even
number of arrows pointing into each. vertex.
Then there are eight possible different configura-
tions of arrows at each vertex (hence our name
for the model), as shown in Fig. 1. Next we as-
sign energies 6y E'8 to these vertex configu-
rations and the problem is to evaluate the parti-
tion function

8
Z = Q exp(-P P N; e, ),j =1

where the summation is over all allowed configu-
rations of arrows on the lattice, and ¹ is the
number of vertices of type j.

Let e, =exp(-Pe, ), and suppose the model to
be unchanged by reversal of all arrows (in ferro-
electrie terminology this implies that there are
no electric fields). Then we can write

4) I = 602 = Q~

The method of attack on the problem was guided
by some recent results for an inhomogeneous
system satisfying the "ice condition" (d = 0), in
which me observed that the Bethe Ansatz approach
worked provided that the transfer matrices of any
two rows commuted. This led to an algebraic
identity which later reflection has shown to be
the diagonal representation of an identity between
the transfer matrices and another matrix function

Applying these ideas to the d &0 situation, sup-
pose that a, b, c, and d can vary from row to
rom. We find that the transfer matrices for any
two rows commute provided that

a:b:c:d=sn(7l-v): sn(q+v): sn(27'):

-hsn(2g) sn(q- v) sn(rl+ v), (3)

where sn(u) is the usual elliptic function' of mod-
ulus k; k and g are fixed, but v can vary from
row to row. Thus we can write the transfer ma-
trix of a typical row as T(v), where v is a vari-
able parameter.

We now look for a matrix identity of the type
mentioned above and find that there exists a ma-
trix function Q(v) (in general nonsingular) such
that'

Q)5 = (de =C, QPV= (d8 =d. (2)
K(v) T(v)Q(v) = y(v-q)Q(v+ 2q)
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FIG. 1. The eight arrow configurations allowed at a
vertex.

We have succeeded in solving this model for
arbitrary values of a, b, c, and d, and outline
here the main results. The details of the deriva-
tion will be published elsewhere. '

where

+ y(v+ q)Q(v-2q),

&(v) =[c 'H(2')e(v-rl)e(v+q)]",

V(v) = [e(0)a(v)e(v)],

H(u) and e(u) being the elliptic theta functions'
of modulus h. Both T(v) and Q(v) are 2s-by-2s
matrices, and Q(v) commutes with any matrix
T(u) or Q(u). Thus there exists a representation
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(independent of e) in which the matrices in (4) are
diagonal, and we can look at one such diagonal
element.

From the quasiperiodic properties of Q(v) we
can show that it must be possible to write each
of its diagonal elements in the for m

—S
Q(e) = II,H(v v-„)e(v v-„) (7)

(provided that P7 is even). Setting g = g ~ ~ '
n„» in (4), the left-hand side vanishes and we get
N/2 equations for t „~~ ~, u„„. These can in
principle be solved and the corresponding diago-

nal element (eigenvalue) of T(v) can be calculated
from (4). (These equations are analogous to the
equations for the wave numbers in the Bethe Ae-
sats. ) The partition function for a large lattice
can then be calculated in the usual way from the
maximum eigenvRlue.

I et K and K' be the complete elliptic integrals'
of the first kind of moduli k and O''. Define

7= ~I(.
. /2', q= i') /m, v = fZn/~.

Then we find that the free energy per vertex, f,
is given by

sinh'[{7-X)n][cosh{nz)-cosh(nn) ]—pf = lim N ' InZ = — s, + 2
n sinh(2nT) cosh(nx)

provided that k, A., and a are real and

0&l &I, ~n)&) «. (10}

cot(vP/2p) i T-T, (
"I', (11a)

For given values of a, b, c, and d {constant
throughout the lattice), k, r), and u (and hence 7,
1., and n) are to be calculated from (3). The re-
strictions (10) are equivalent to a&0, b&0, d&0,
and c&a+b+d. Thi, s set of values of a, 5, e, and
d we call the principal domian, and we see that it
corresponds to a generalization of the ordered E-
model state. Fortunately we can map any set of
values a, b, c, d into the principal domain (or its
boundaries —as f is continuous these present no
problems) by using the symmetry relations (9)-
(12) of Ref. 1 (writing a, b, c, d for u„u„u„
u,).

Inside the principal domain f is an analytic
function of a, b, c, Rnd d. Thus as the tempera-
ture T is vax'ied a phase transition can occur only
when a, b, c, or d (or their appropriately mapped
values) cross a boundary of the principal domain,
and in general this will cox'x'espond to just one of
a, b, d, or e-a-b-d becoming zexo. If two or
more become zero simultaneously, we have a
more complicated situation —the E and KDP mod-
els are in this category —which is not discussed
here.

If the mapped values of a, b, or d become zero,
we find that f is the same analytic function of T
on both sides of the boundax'y value, so there is
no phRse transltlon. However~ lf t"-Q-5-d hRS R

simple zero at some value T, of T, we find that
f can be written as the sum of an analytic and a
singular function of T. The analytic part is the
same on both sides of T„while near T, the sin-
gular part is proportional either to

2. '{T-T.)"in( T-T, ),

where 0& +&7 Rnd

cos) = (ab-cd)/(ab +cd).

The constant of proportionality which multiplies
(11) is the same on both sides of T, .

%e conclude that if a given eight-vertex model
has a phase transition, then in general the free
energy has a branch-point singularity. Note that
the exponent w/p of this singularity can range
continuously from one to "infinity. " All previous-
ly solved cases are in a sense deceptive in that
they correspond to very special values of the ex-
ponent. For instance, the Ising model and the
"free-fermion" model' correspond to p, = w/2,
and we can think of the E model as a limiting
case in which p, -O, i.e., the singularity becomes
of infinitely high order.

The author is indebted to Professor Lieb for
stimulating his interest in the above problem.
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6Yo derive (4) we have negated a. As Z is unaffected
by this transformation, this has no effect on the sub-
sequent equations.


