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Measurements are described of the thermal expansion n of two samples of V&Si. One
shows a large anomaly in 0. resulting from the structural transformation, which starts
above 80'K and continues below the superconducting transition temperature T, . The
other sample shows only about 1% structural transformation, and the associated anisot-
ropy in the discontinuity of n at T, shows that quadratic terms in the strain dependence
of T~ are unusually large.

The superconductor VPi has a high transition
temperature, ' T, -17'K, and exhibits a progres-
sive transformation from cubic to tetragonal
structure over a range of temperature somewhat
above T, .' The sound velocity shows no discon-
tinuity at T, but its temperature derivative
shows a discontinuity about four orders of mag-
nitude larger than the typical value for most su-
perconductors. Testardi et al. ' claim that this
indicates a small linear strain dependence, 1",.

=BT,/B~„of T„with an unusually large qua-
dratic strain dependence, b, , =B'T,/Be,.Be, The
pressure dependence of T, appears to be incon-
sistent with this result. ~ We find that the anisot-
ropy of the thermal-expansion anomaly at T, in
a sample of V,Si which is almost nontransform-
ing appears to support Testardi's claim.

We have measured the linear thermal expan-
sion of two samples of V,Si from 1.5 to 30'K.
The thermal expansion along a cube axis of one
sample, VSSi A. , is anomalously large and posi-
tive, consistent with this axis being the a axis
in the tetragonal phase. Our measurements are
performed with a capacitance dilatometer, which
gives much greater sensitivity than the x-ray
method. With the greater sensitivity we find
that the structural transformation begins Bt a
higher temperature than previously thought and
continues below T, . The anomaly in the thermal
expansion at T, in VSSi A is somewhat obscured
by the structural transformation, and the data
for VSSi B are more informative about the strain
dependence of T, . This sample was measured
along a cube axis and also along a perpendicular
(011) axis, and the thermal expansion above T,
(which is much smaller than in V,Si A) has an
anisotropy consistent with the transformation of
only about 1% of the sample, with the c axis
along the cube axis. When the anisotropic change
in the thermal-expansion coefficient at T, is
analyzed accordingly, the resultant values of

I i an ~xz +x2 are in reasonably good agreement
with those of Testardi et al. '

Since the behavior of V,Si is sensitive to strain,
precautions were taken in mounting the samples
in the capacitance dilatometer to minimize strain
due to differential thermal contraction on cool-
ing. A 1.5-mm hole was spark drilled down the
axis of V,Si A (diameter -length-10 mm), so
that it could be held against the copper base plate
of the dilatometer under the light pressure of a
spring washer. Rubber cement was used to fas-
ten V,Si & (dimensions-9&& 6x 6 mm') to the
base plate since it was mounted with each of two
perpendicular axes in turn along the measuring
direction. The small amount of transformation
in this sample ensures at least that the strain
does not change significantly in the region of
measurement, though there may be a constant
radial strain transverse to the measuring direc-
tion due to differential thermal contraction at
higher temperatures.

The change in the thermal expansion at T, is
obtained from the free-energy difference, which
for a second-order transition with a parabolic
relation between critical field P, (T) and tempera-
ture T may be written, for T below T, ,

Fiv F s — — [T (&) T]2Ii, (T, e) A2

8n 8~ c

The coefficient A' is determined from the specif-
ic-heat discontinuity at T„

d
C ~-C s= T

d
(FN Fs)v v dT TC

From Eq. (1) we obtain'

-A2T,
4z

de" des +A' dT, (e)
dT dT T 47T dE

C

where c is the elastic modulus tensor at T, . Fol-
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i sam les between 1.5 and 30 K.Table I. Uniaxial strain for VSSi samp es

Identi-

Measuring
direction

fication
of di-
rection

(n~-n ~) ~
(10-6-K-')

(100)
(100)
(011)

57
-1.63
-0.14

890 a axisVBSi A
-4(-10)' c axisV,Si B

20 g plane

'n a lausible extrapolation~-10&10 is obtained by making a p'The value &(30'K) ~- ' ' n a
of the (100) curve in Fig. 2 from above T, to zero . e case o

ndln correction or e
percondUctlvl y 0 0t t obtain the strain ~(30'K) associa e
formation is negligibly small.

'h

lowing Testardl et Ql. , %'e write,

(4)

cr stal which has undergone a cubic to

at T relative to the cubic state is &=
3

——5 where 5=cya- .w / l. In this case the change
in the thermal-expansion coef i

T,(e) = T,(0)+1 ~ e+2e Z. e,

h t for a nontransformlng cubi ybic cr stal thesot a or bi
change 1n e 1th sotropic linear-therma -exp
coefficient a at T, is

the same tetragonal symme yetr as the transformed
crystal; Eqs. (3) and (4) give'

1„-n ) =(—bn -~En, -3&n),Q~-Qs ~

2 2
11 12)'47t' C~~ C~

Since 3 l 1V S & is almost nontransforming, we
o&0can roughly esbma e ' ' 30t the isotropic strain e 30 )

b aVeraging the data ln Table I as explainey
%Pith the resultant very sma11a11 correction,below. x

e' 30'K) = 10&& 10 ' we find for VPz A a unlaxlal
e,30'K) =880X 10 ', which is to be com-' f the strainpared with the value of 830 & 10 for
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along the a axis of a completely transforming
crystal obtained by x-ray Ineasurements. ' We
conclude that V,Si A transforms completely with
the a axis in the tetragonal phase along the mea-
suring direction. Vfe find that the thermal-ex-
pansion coefficient is still anomalously large at
30'K (o. =6X 10 "K '), so that the transforma-
tion must begin somewhat above this tempera-
ture. As shown in Fig. 1, e shows a discontinu-
ity at T, in the sense that it rises rapidly from
10&& 10 "K ' at 16'K to 67&& 10 "K ' s.t 17'K,
and then increases more slowly at higher temper-
atures. The maximum value of e is -160~ 10 '
'K ' at -20'K. It is interesting to note that the

thermal expansion of V,si A shoms anomalous
temperature dependence even belom T, and is
considerably larger than that of 7~Bi 8 at all
temperatures, which indicates that the structural
transformation continues into the superconducting
state.

Both the uniaxial strain e(30'K) and the discon-
tinuity in the thermal-expansion coefficient (Ix„
-IxR) are anisotropic in V,Si 8 (Fig. 2 and Table
I). If we suppose that fractions f„f„and fs
transform with the tetragonal c axis along (100),
(010), and (001), respectively, and use the val-
ue, e(30'K) = 880&& 10 ', along the a axis of the
completely transforming sample, me obtain two
equations (in units of 10 ),

ex00(30'K) = -10= e0(30'K)-1760fl+ 880(f0+f3),
e'10(30'K) = +20= e'(30'K) +880f,-800[-,'(f, +f,)],

which give f;2(f,+f,) =1.14'% and an isotropic strain e'(30'K) =10&& 10 '. The equations for the dis-
continuities of the thermal-expansion coefficient at T, follow from Eqs. (5) and (6) and have a form
similar to Eqs. (7), if we assume that the structural transformation and superconducting transition
of the fractions with different c axes determine the anisotropy of e(30'K) and (cx„-cxR)r in a similar
may;

A2 I'
(XX XX )100—

8rc 4m c11+2c12

45 2

(&xx-&„)[J;0(f.+f.)] .25 2 (8)

We substitute xll Eq. (8) fl'onl Table I with the
values A /4II = 3.82 x 10 erg/cm K, cll+ 2CI0
=5.14& 10"erg/cm', -', (c»-c») =0.08&& 10" erg/
cm ~ and 35 = 880& 10 q and obta1n I »

= -80 K and
(L»-h») =-16X10"K. If V,Si A is assumed to
transform completely mith the a axis along the
measuxing direction, and the discontinuity in the
thermal expansion at T, estimated from Fig. 1 is
57X10 "K ', the resultant value of (b,»-A»)
from Eq. (6) is -20&&10"K. These values agree
reasonably mell %'1th those estimated by Testardi
e& Ixl. ,' ii'Xi&50'K and (a„-b,12) =-19x10''K, in
viem of the fact that this upper limit for I', mas
estimated from a null measurement of the dis-
continuity of the velocity of sound at T, in a
transforming sample. '

We mould like to thank G. K. %'hite mho partici-
pated in the early stages of this mork, and L. R.
Testardi mith mhom me have erqoyed illuminating
discussions. We are indebted to J. R. Patel for
supplying the samples mhich were gromn by E. S.
Greinex.
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apparent reversal in sign between Eqs. (1} and (3)
results fxom the fact that the latter equation describes
the free energy only for T below T, . In Eq. (3) we
neglect the term F dc/dT, which Testardi shows to
be negligible compared with the term (Ax/4II)dT, /de
eveQ iQ a tlansfolDHng crystal for which & & 0 at T
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The transition tempexature, T & 16'K, observed

in both V38i A and VSSi B is somewhat lower than that
reported in the literature. L. H. Testardi, J. E. Kunz-
ler, H. J. Levinstein, J. P. Maita, and J.H. Wernick
[Phys. Bev. B 3, 107 (1971}]find that nontransforming
samples of V38i have E, -17.1 K while transforming
samples have T, -16.8'K.

The difference of 0.3 K may be too small to measure
in the pxesent experiment since the thexmal expansion
of tile tran8forxIlillg RRIIlple VxSI A (Fig. 1) 18 qualita-
tively different from that of the nontransforming sam-
ple VSSi B (Fig. 2) possibly because of an inhomogen-
eous strain in the former, so that T, is charactexized
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differently in the two samples. Havever, the low value
of T~ we observe for both samples can only be attribut-
ed to error in our thermometer. %e used a german-

ium resistance thermometer calibrated by Cryocal,
Riviera Beach, Fla. , and were unable to check the
calibration later since the thermometer was damaged.

Eight-Vertex Model in Lattice Statistics
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The solution of the zero-field "eight-vertex" model is presented. This model includes
the square lattice Ising, dimer, ice, P, and KDP models as special cases. It is found
that in general the free energy has a branch-point singularity at a phase transition, with
a continuously variable exponent.

It has been pointed out' that many of the previ-
ously solved two-dimensional lattice models, no-
tably the Ising and "ice"-type models, can be re-
garded as special cases of a more general model.
Adopting the arrow terminology used by Lieb, '
we can formulate this model as follows: Place
arrows on the bonds of a sare, N-by-N lattice
and allow only-those configurations with an even
number of arrows pointing into each. vertex.
Then there are eight possible different configura-
tions of arrows at each vertex (hence our name
for the model), as shown in Fig. 1. Next we as-
sign energies 6y E'8 to these vertex configu-
rations and the problem is to evaluate the parti-
tion function

8
Z = Q exp(-P P N; e, ),j =1

where the summation is over all allowed configu-
rations of arrows on the lattice, and ¹ is the
number of vertices of type j.

Let e, =exp(-Pe, ), and suppose the model to
be unchanged by reversal of all arrows (in ferro-
electrie terminology this implies that there are
no electric fields). Then we can write

4) I = 602 = Q~

The method of attack on the problem was guided
by some recent results for an inhomogeneous
system satisfying the "ice condition" (d = 0), in
which me observed that the Bethe Ansatz approach
worked provided that the transfer matrices of any
two rows commuted. This led to an algebraic
identity which later reflection has shown to be
the diagonal representation of an identity between
the transfer matrices and another matrix function

Applying these ideas to the d &0 situation, sup-
pose that a, b, c, and d can vary from row to
rom. We find that the transfer matrices for any
two rows commute provided that

a:b:c:d=sn(7l-v): sn(q+v): sn(27'):

-hsn(2g) sn(q- v) sn(rl+ v), (3)

where sn(u) is the usual elliptic function' of mod-
ulus k; k and g are fixed, but v can vary from
row to row. Thus we can write the transfer ma-
trix of a typical row as T(v), where v is a vari-
able parameter.

We now look for a matrix identity of the type
mentioned above and find that there exists a ma-
trix function Q(v) (in general nonsingular) such
that'

Q)5 = (de =C, QPV= (d8 =d. (2)
K(v) T(v)Q(v) = y(v-q)Q(v+ 2q)

iL
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FIG. 1. The eight arrow configurations allowed at a
vertex.

We have succeeded in solving this model for
arbitrary values of a, b, c, and d, and outline
here the main results. The details of the deriva-
tion will be published elsewhere. '

where

+ y(v+ q)Q(v-2q),

&(v) =[c 'H(2')e(v-rl)e(v+q)]",

V(v) = [e(0)a(v)e(v)],

H(u) and e(u) being the elliptic theta functions'
of modulus h. Both T(v) and Q(v) are 2s-by-2s
matrices, and Q(v) commutes with any matrix
T(u) or Q(u). Thus there exists a representation
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