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Electroproduction Sum Rules
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%'e present a new sum rule which relates the nucleon form factor to the integral over
energy of the inelastic cross section of nucleons by charged vector currents.

Assuming local commutation relations for the fourth components of isospin currents, we may write

[fe ""5„;,'(x)d'x, fe"'y F, ;,'(y)d'y]„,=„=2F„
where the F;"(x) are the v'ector isospin currents and the F; are the generators of isospin rotations. '

By considering matrix elements of (1) between states in the infinite momentum frame, i.e. , P, —~, we
may derive a class of sum rules. In particular for jperpendicular to P=(0, 0,P, ) for proton states the
sum rule iS

[F,"(-i')]'+q'EF,"(-q.')]'+ -'q' fd» '[4'&, (~, -i')-fi&(~g-q')] =1,

where I, and I"2 are nucleon isovector form factors, B, and B4 are amplitudes contributing to the scat-
tering of an imagined charged, virtual photon by the nucleon, and we exclude the contribution of the
neutron intermediate state. 82 and B~ are defined by

&"'(u, q) = (2 )'(u./M)Z. &PI~„;,"(0)I && l~, —;,'IP&b'(P+q-P. )

-(2 )'(~./M)Z. &pl&, —;.'(0)l.&& l~„.." »(l~ &'bV q I.), --
~"'(p, q) =p"p "&,+q"q "&,+ '(0"q'+0 "q-")&,+Z""It'

By taking the derivative of Eq. (2) with respect to q', at q'= 0, one then obtains the well-known Cabib-
bo-Radicati sum rule. '

We wish to consider the limit of (1) between proton states with P, - ~ and now, rather than q = (j„0),
we take q= (0, 0,q, ) with q, -~. We further demand that the ratio q, /P, remain fixed as q„P,—~ and

call this ratio A.. At first sight it might appear that the momentum transfer between states is infinite,
but th18 18 not so lt 18 g1ven by

q'= (&.-&)'-(p.-p)'= 1[(u.+ q, )'+M.']'"-(u,' M')'"]'-q, '

for an intermediate state of mass M„.The featux'e of finite momentum transfer becomes cleax'er if we

transform to the rest frame the commutator under consideration:

1im je "3"sd'x,dx,(p, —~
I
[F„'(0,x), F '(0) ]I p, - ~)

=~f. '""'d".d..(p=0I[~.~,(- .;„.), n ~ (o)llp=o&

=y fe '"""sd'x~dx, (p=OI[ri ~ P, (-x, ;x~,x,), q ~ F (0)]lp= 0),

rlq= (1;00-1), y =Po/M,

which shows that q' is finite; the result for q of course agrees with our previous expression.
We have also verified that (1) is a so-called good commutation relation in the p„q,-~, q, /ps fixed

limit, in the sense that its matrix elements between fxee quark states are saturated by the single free-
quark intermediate state. ' We then proceed to examine the matrix element of (1) between proton states:
We find, separating out the contribution of the intermediate neutron state, that

[F,"(b,')+ 6'F,"(6')/2M]'+ (M/P, )f„"dq,A"(q, P) = 1, b,' = -1'M'/(1+X),

whex'e 4' is the value of q' corresponding to M„=M, the nucleon mass. The integral can be rewritten
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eovariantly by introducing the variable v=q. p. Since q=(0, 0, q~) is fixed we have

q, = (v+q ~ p)/P, = (v+q, P,)/P„dq,=d v/P„q' =q,'-q, ' = 2A. v-A. 'M',

and our sum rule becomes, as P, —~,

F,"(6')+ ' +M f dv [B,(v, q')+&'B, (v, q )+&B,(v, q')].. .~, &~„2--1. (8)

Labeling the B's in (8) with a. superscript, B-B, to indicate that it denotes scattering by negative
currents, we can relate by crossing B (-v, q') to B'(v, q'), the scattering by positive currents, and
find as always, with the one neutron state separated out from the integral, that

F,"(a')+ ' +M f dv(B, (v, q ')—B,'(v. q, ')+X'[B, (v, q ') —B,'(v, q, ')]

+y[B, (v, q ')+B,'(v, q, ')]}=1, q, '=+2k. v—A. 'M', 0~ ~A. ~&1. (9)

By current conservation, only two of the B's are independent, so we may express them in terms of
and 8', ', the char ged anaIog s of the scaIar s 8', and W, measured in ine 1astic el ectron -proton scat-

tering. '
The sum rule, given in (9), has several interesting features: It is unphysical in that there are no

charged photons, but one could estimate resonance contributions to it. %e plan, in a future publica-
tion, to give such an evaluation, as well as to present the analogous sum rule for neutrino-proton in-
elastic scattering. Note that B and B" are evaluated at different values of q2; as v/M2»l we enter
into the scaling limit, ' namely, the ratio q'/2v is fixed and we must demand that the B's have well-de-
fined limits at q', v- ~, q'/2v =+A., and be such that the integral converges. One particularly interest-
ing aspect of the sum rule is that q' ranges over positive values; in particular we might expect B to
become large when q' is close to the location of the p-meson pole. It is amusing to note that increas-
ing A. makes the neutron contribution smaller, but ean make the contribution of B larger by enhancing
the p-pole's effect, which would enter at a smaller v, as we increase A..

To summarize, we have derived a meaningful continuous class of sum rules, functions of a parame-
ter A. that ranges in magnitude from 0 to 1 (as A. -0, which is the same as q, -0, the integral vanishes
and we have identity, ' whereas for A. -1, we are no longer in the infinite momentum frame for the
crossed term so our assumptions break down). Rather than being characterized by fixed q', our sum
rule has q linearly related to v with A. the parameter characterizing the relation.
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