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Inelastic m -C scattering from 120 to 280 MeV is calculated in the distorted-wave &orn
approximation using the Kisslinger optical potential and treating the 2 (4.44 MeV and
8 (9.64 MeV) levels as rotational states. Agreement with experimental data is good,
especially in the forw'ard hemisphere. Fairly consistent values for the deformation pa-
rameters are obtained.

Elastic m -C scattering in the energy region of the 33 r-nucleon resonance has been calculated re-
cently by Sternheim and Auerbach. ' Using the Kisslinger optical potential' with parameters derived
from v-nucleon phase shifts, these authors obtain remarkably good fits to the elastic scattering data
of Binon et al. They improve the fits somewhat by varying the parameters, thus arriving at a phe-
nomenological optical potential.

The Binon experiment also resolved inelastic scattering to several of the widely separated low-lying
states of "C. We have treated the strongly excited 2' (4.44 MeV) and 3 (9.64 MeV) levels as rotation-
al excitations and calculated inelastic scattering to these states using the distorted-wave Born approx-
imation (DWBA). The resulting inelastic fits are at least as good as the elastic fits, apparently justi-
fying the use of the rotational model and the direct reaction formalism for the (m, v') reaction in this
energy region.

The Kisslinger optical potential in coordinate space is given by4

V(r) = (5'c'/2E) j-Ab. k'p(r) +Ab, V [p(r) |2]j,

where A is the mass of the target, k and E are respectively the lab momentum and total lab energy of
the incident pion, and p(r) is the nucleon density mormalized to unity. The complex Kisslinger param-
eters bo and b, are directly related to the &-nucleon phase shifts. ' For '2C, electron scattering data
suggest a modified Gaussian nucleon density, '

p(r) = po[1+(Z-2)r /Sa2]exp(-r2/a2), a = 1.5 F. (2)

Equation (2) is actually the charge distribution for two 1s protons and (Z-2) lp protons in a central
harmonic potential; for even-even nuclei like "C the neutron density is assumed to be the same.

Differential cross sections for elastic scattering from the optical potential are obtained by numeri-
cally solving an approximate Elein-Gordon equation,

a'c'(-V'+ p')y = [E V, (r)--V(r)]'y=[(E V, )' 2-EV]y-

Here p=m, c/)1, Vc is the Coulomb potential, V is the optical potential in Eq. (1), and E is the total
incident-pion energy; the position of the target nucleus is assumed to be fixed. For a complete dis-
cussion of the elastic scattering calculations, the reader is referred to the papers of Auerbach and
Sternheim. '

We now consider a deformed nucleon density p(r, a(0')) obtained from (2) by making the parameter
a functionally dependent upon the body-fixed polar angle 8'. Ke choose

a(8') =a,[1 P+Y,~(e')], a, =1.5 F, (4)

where Yo is the spherical harmonic of order L and P~ is a deformation parameter. To first order in
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the deformation we have

p(r, a) = p(r, a,) + (a-a,)[&p/&a], = p(r, a,) + P~F(r) Y,~(B'),

where F(r) =ao[sp/Ba], . The deformed density gives rise to a deformed Kisslinger potential
0

V(r) = V (r) + V ' (r B')

which we have written as the sum of a spherical term V ', and a deformed term

V ' =P~(5 c /2'E')I-Ab k F(r)Y ~(B')+Ab, V [F(r)Y (B')V]).

While the spherical term V ' can give rise only to elastic scattering, excited rotational states of the
deformed nucleus are strongly coupled to the ground state by the deformed term V ' . In particular,
we treat the 2+ (4.44 MeV) and 3 (9.64 MeV) states of '2C as pure rotational states; they are coupled
to the 0' ground state by quadrupole (L = 2) and octupole (L = 3) deformations, respectively.

In the distorted-wave Born approximation, the transition amplitude for excitation of the 2 -pole ro-
tational state is

Tz; (M) = fd'r gz *(k&, r)(I M I
V '

I 00) l(,.
+ (k, , r),

where X; and X& are the distorted waves representing the elastic scattering of a pion with incident mo-
mentum k,. and final momentum k&, respectively. They are solutions of the Klein-Gordon equation
using the spherical optical potential V( . The matrix element of the deformed potential, (Lhf J

V('& Ioo)
is taken between the 0+ nuclear ground state and the excited state of angular momentum I- and projec-
tion M.

Integration over internal nuclear coordinates gives

«Ml V"'IOO&~ P&- b, k2F(r)Y„'*(r)+biV [F(r) ~~*(r)V]),

where r denotes the orientation of the pion position r relative to the lab-fixed z axis. The distorted
eaves X; and g& are each expanded in a partial-wave series, so that

T&, c('Qfd3r[r 'y, i (r)Y i'*(r)] [-bok'FY„*+b,V-(FY„*V)][r 'g', + (r)Y„'(r)].

Writing v =r&/&r-(i/r)r xL and using standard techniques of angular momentum algebra, we find that

Tfi (x px Q I. bok GI biGII + biGiII ziti ] fdr Y ~ +Yii

The integral over spherical harmonics is easily
evaluated. The radial integrals are

G, = fdr )(„( &Fx, ('-&,

f„(~X, ' ' 4'' ')~(dX,
" X,") (,())

~,(-) ~ (+)
dr ' I'r

and the quantity E,i, is

,'[L(L+ l)-f (f-+ i)-f(f+ l)].

G& is the usual radial integral encountered in dis-
torted-wave calculations using a local optical
potential. G» and G&» arise from the Kisslinger
modification and result from the radial and azi-
muthal components of V, respectively. The dif-
ferential cross section is proportional to [ T&; I'
summed over the nuclear orientation M.

The distorted-wave program DWUCK' was ex-

tensively modified to carry out the calculation.
We used the Kisslinger parameters tabulated in
Ref. 1, and the reader is referred to the same
paper for plots of the elastic cross sections. We
calculated inelastic differential cross sections at
120-, 150-, 180-, 200-, 230-, 260-, and 280-
MeV incident-pion energy. The results are
shown in Figs. 1 and 2.

The solid-line cross sections ("Fermi-aver-
aged parameters") use Kisslinger parameters
derived directly from free &-nucleon phase shifts
and corrected for the Fermi notion of the nucle-
ons. These curves are of the greatest interest
since, except for the deformation parameter Pz,
they represent a parameterless model. The long-
dash curves ("best-fit parameters") use Kissling-
er parameters which have been varied to improve
the elastic fits; in some cases they also improve
the inelastic fits. Finally, the short-dash curves
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FIG. l. x + C x + C* differential cross sections
for excitation of the 2' level at 4.44 MeV. The Kiss-
tinger model using Fermi-averaged parameters (solid
.ines) and best-fit parameters (long-dash line) is com-
Iared to the simple optical model (short-dash line).
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FIG. 2. Differential cross sections for excitation of
the 8 level at 9.64 MeV.
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Table I. Deformation parameters for the 2 level (P&) and the 3 level (P3), using
both Fermi-averaged and best-fit Kisslinger parameters.

Energy
(MeV)

P2
Fermi averaged Best fit

Pp
Fermi averaged Best fit

120
150
180
200
230
260
280

0.70
0.80
0.70
0.81
0.87
0.82
0.98

0.68
0.66
0.65
0.76
0.85
0.80
0.98

0.70
0.72
0.71
0.74
0,74
0.80

0.55
0.66
0.66
0.68
0.68
0.77

("simple optical model" ) are included to illus-
trate the importance of the p-wave term in the
Kisslinger potential. The simple optical model
follows from a forward-angle approximation in
(1) in which b, —0 and b, —b, +b„ it is inadequate
beyond the first diffraction peak.

In all cases the Kisslinger model successfully
predicts the position and shape of the first dif-
fraction peak. This feature permits a fairly ac-
curate determination of the deformation parame-
ters. Because both the deformation and the tran-
sition amplitude are calculated only to first order
in P~, the differential cross section scales with

) P~ ('. The magnitude of the deformation (but not
the sign) was thus determined in each case by
displacing the cross section vertically to obtain
a visually best fit to the data.

The position of the first diffraction minimum is
fairly well predicted, although the minimum is
too deep at the lower energies. The position and

shape of the second peak are only qualitatively
correct at the lower energies. The wide-angle
data (where they exist) sometimes exceed the
predicted cross sections by as much as an order
of magnitude. This quantitative failure of the
model at large angles, which is seen in the elas-
tic fits as well, is probably due to ignoring nucle-
on recoil in the derivation of the optical potential
and to the omission of higher-than-p-wave terms
in the m-nucleon amplitude. '

Deformation parameters for the 2 and 3 lev-
els are listed in Table I. If the deformation is to
be interpreted as a property of the nucleus inde-
pendent of the scattering particle, we expect de-
formation parameters which are independent of
pion energy and comparable in magnitude to those
obtained from nuclear inelastic scattering. In
fact the v-nucleus deformations tend to increase
slowly with pion energy and are somewhat higher
than those obtained using nuclear projectiles,

which are typically on the order of 0.5.' It is
also apparent that deformations this large should
not be treated in first order; improved calcula-
tions are under way.

We conclude that fairly accurate distorted-wave
calculations can be carried out in the 33 reso-
nance region using the Kisslinger optical poten-
tial. Both the collective model and the direct re-
action formalism appear to be applicable to n-nu-
cleus inelastic scattering. "
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