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The pair anisotropy model is extended to include the next-nearest-neighbor tetrahedral-
llon ioQS ~ AD RDlsotropy model based oQ growth iDducecl preferential site occupRtion is
derived using the pair model. With the site model the nearest-neighbor tetrahedral- and
Dearest Deighbor octRhedrRl-iron ions lead solely to R uniRxiRl RQisotropy under both
growth facets. Inclusion of the next-nearest-neighbor tetrahedral-iron ions results in
the experimentally observed orthorhombic anisotropies.

Recent experiments on flux-grown magnetic
garnets containing two or more rare earths have
shown that some of these garnets exhibit noncubic
magnetic anisotropies of the order of 10' erg/
cm at loom temperatux'e. We have earlier

prop-

osedd a pair-anisotropy model' based on the pos-
sible existence of a growth-induced preferential
pair oxdering between the rare-earth ions and
their nearest-neighbor tetrahedral-iron (NNT)
and nearest-neighbor octahedral-iron (NNO) ions.
This model has been shown to predict the ob-
served symmetries of the noncubic anisotropies, '
and to give good quantitative agreement with
roem -temperature torque measurements recently
performed on a sexies of these garnets. '

In this Letter we extend the pair model to in-
clude the next-nearest-neighbor tetrahedral-
iron (NNNT) ions as well. Although the NNNT
lons ax'e farther from the I'aI'e-eaI"tIl site than
the NNT ions, the anisotropic superexchange be-

tween the rare earths and the NNNT ions is com-
parable to if not larger than that with the NNO
ions." In addition we derive, with help of the
pair-preference model, a site-preference model
in which we assume a growth-induced preferen-
tial site occupation of the rare-earth ions in the
dodecahedral sublattice. %'e show that, unlike
the pair-prefexence model, the site-preference
model predicts only a uniaxial anisotxopy when
the NNNT ions are not considered. However,
when these ions are considered, the site-prefer-
ence model px'edicts the same orthorhombic sym-
metries for the induced anisotropies as does the
pair-preference model.

We consider a garnet crystal having two rare-
eaIth ions, A and B, in the dodecahedral sublat-
tice and the iron ions C in the tetrahedral and
octahedral sublattices. Each rare-earth ion is
bonded to (i) two NNT ions by (100) bonds, (ii) four
NNO ions by (210) bonds, and (iii) four NNT ions

779



VOLUME 26, NUMBER I) PHYSICAL REVIEW LETTERS 29 MARcH 1971

by (211) bonds, where the above sequence of neighbors is in order of increasing distance. Using the
procedure outlined in Refs. 2 and 3, we find that the pair-preference model predicts the growth-in-
duced pair anisotropy under the (110) facet (when written in the 1110)coordinate system where x-=[001],
y= [110], and z= [-110])to be

E(IM) = 2(N~clo)'(eo'-e, )(a.„'-8)+,(N~clo)'[e, '(16a„'+11','+3a, ')+ p I'(4a '+8a '+8a, ')+e &((y + 9a )]

+ s(N„clo)'"[eo"'(8a.„'+4n, ') + e,'"(4a„'+ 18(2„'+2a,')

+ as' '(8 a.„'+4 a, ) + e8"'(4 n„'+ 2 a.,'+ 18 a.,')]+ C, . (1)

In Eq. (1) the magnetization has direction cosines (a„, a„a,,) and the superscripts I, II, and III desig-
nate the parameters for (100), (210), and (211) pair ordering, respectively. The total number of AC
bonds per unit volume is given by N~~. The term lp ling ling is the net pair-interaction coefficient.
The preference parameters e"""represent the relative preference for each of the different A. C bonds
of types I, II, and III. Equation (1) defines an orthorhombic anisotropy whose principal axes are the
principal axes of the (110)coordinate system. This is the observed anisotropy. "

Similarly under the (112) growth facet the pair anisotropy (when written in the (112) coordinate sys-
tem where x—= [111], y=—[110], and z = [112]) is

E(„,)» = —', (N„clo) I(~2'-e,') [a,„'+2 a.,'-(2V 2) n„a.,-l]+—', (N„cl,) "[eo"(6 a.„'+4 a.,')
+ g,"(—', a„2+ 9a,,s+ —,a,s+ 28W2a„a.,)+ 68 (12n„+2a, +6a., )+ e, (—,n„+4a., + —sa, + 81l2a'„&,)

+&, (—a.'„a.'+ 8 a.', -812a', a',)J+ s(&zclo) [&I (8 ax +10a'2 +s &8 +a~2(I' a')

~ ~ III(16 2+2 2 8~Pa )+ 6 III(9 2y3 2) p ~ III(8 ~ 2+4 2~ 16 2 16' )

III(8 ~ 2 y ~ 2 F 26~ 2 ~ so&2~ G )+ 6 III(18+ 2)]+ C (2)

Equation (2) defines a noncubic anisotropy under the (112) facet with such symmetry that the easy axis
will be either along the [T10] axis in the (112) plane, or alternatively somewhere in the (110) plane.
This again is the observed symmetry. "

We note that the addition of the l,'" terms, that is, those involving the NNNT ions, does not alter
the symmetry of the anisotropy from that derived solely from the l,' (NNT) plus l," (NNO) terms. " In

addition, the inclusion of the l,'" terms produces no appreciable change in the quantitative analysis of

Refs. 1 and 2. This last result is not surprising in light of the similarity between (211) and (210)
bonds.

Let us now consider a model based on the possibility of a growth-induced preferential site occupation

in the dodecahedral sublattice. We find that there are twelve different rare-earth sites defined with

respect to the NNT, NNO, and NNNT ions. Of these twelve sites only six are magnetically inequiva-

lent. These twelve sites can be divided into three subsets of four sites each with respect to the NNT

ions alone. In Table I we list all of the (100), (210), and (211) bonds of the four sites belonging to the

X subset. We note that sites X, and X, are derived from X, and X, by reflecting all neighbors in the

y-z plane. Also site X, is derived from site X, by reflecting only the NNNT neighbors in the x-y plane.
One can construct similar tables for the (I'„Y;, I'2, Fs) and (Z„Z„Z„Z,) subsets by cyclically permut-

ing all the neighbors for each X site of Table I. Defining the site preference of the A ion by qx, , gx,
q~, ~~, and so on, and considering, as in the pair-preference model, "that the rare-earth-iron

2' 2'.
magnetic interaction' is dipolar in the first order, we can define the magnetic anisotropy for the A

ion at the ith site as
4

N~g. [Zl~c (cos %., 8)+ + l~c (cos P» 8)+ + l~c (co O'In
j= 1 4=1 n=1

where l~~', l„~", and l„c'"designate the pair interactions between A and the NNT, NNO, and NNNT

ions, respectively. The angles between the various bonds at the ith site and the magnetization are de-
noted by the q;, , q,.», and y,.„. The number of A ions per unit volume is given by N„. Using Eq. (3)
and Table I we then find that the total site anisotropy in the (100] coordinate system is given by

Ndo(I)x a'x +I)r aI2 +1)z &8 )+slxc [Iix cI2cIg+ I)r C2xa'8+ 1z a''2a'2]1
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Table I. The four sites of the X subset, the bonds to the neighboring iron ions, and the site-
and bond-preference paraxneters.

Site
Site

Preference Bond

N. N. T.
Bond

Preference

N. N. O.
Bond

Bond Preference

N. N. N. T.
Bond

Bond Preference

Xl X1
[100]

(110) (112)
cI cI
1 1

(110) (112)
cII cII

3 3

(110)
III
2

(112)
cIII

6

[100] cI
1 [120] c

[102]

[T02]

EII
1

II
c3

II
E5

EIII
0

3.21

[lal] III

III
c4

III
c3

III
c5

Xl [100]

[100]

cI
1

c1

cI1
EI
1

120] El

[120]
3

[102]

[102] El

cII
l

EII'3

EII
5

EII
3

c II
0

[112]

[121] c
3

[121] l

EIII
4

CII
6

EIII
5

cIII
3

X2 [loo]

[Too]

EI
1

Icl Icl

[120]
3

[120] cl

[102] cII

[102] cl

EII'3

II
E3

EIII
2

[172]

[121] c,"'
[1/1] III

EIII'2

III
E4

IIIcl

X2
Icl

Icl

[120]

[120] c
3

[102] cl

[102] cl

IIcl

II
E3

II
5

II'3

[T12] cO

[1121 c2

[1211
3

[121]

III
c4

III
c2

IIIcl

where
I 4 II III.

lo = 2l~c 5 l~c l ~c

qx'=gx +g~ +gx +~X, similarly for q~' and g~',

'g~ ='gx +g~ -gx -~~ similarly for ~y and ~z1 1 2 2

If, as in the pair preference model, we assume that the site preference of ion A is determined by the
growth facet, then we may use our knowledge of the pair-preference parameters to establish the main
features of the site-preference parameters. Thus, the site preference g, can be related to the pair
preferences of the bonds appropriate to site i by

7J =m p~E( &~
+m Q6~ &~

+I Q6( t) (5)j=1 0 =1 1

where ~, m", and I'" are weighting factors for the different bond classes, and r,."'"are the appro-
priate pair-preference parameters for the ith site. Without knowing the weighting factors, one can
still determine the general relationships between the various g, 's by use of Table I where all of the
pair-preference parameters for the X sites are listed for both the (110) and (112) facets.

If we consider only NNT and NNO ions, it is clear from Table I that for both the (110) and (112)
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facets,

OXI VXI OX2 OX2 0YI VF~ OY2

~Z nZ. ~ (Gb)

In the (100}coordinate system, the site anisotropies under both the (110) and (112) facets are given by
Eq. (4) as

@(110) +(113) NA 0( 1Z1 0» ) ng 3. (7)

We thus have a simple uniaxial anisotropy under both facets, a prediction not supported by the experi-
mental data. " If we now include the NNNT ions, we find from Table I that for the (110) facet Eq. (6a)
is still valid but (6b) now becomes

~Z I ~ZI9 ~Z2 ~Z2

Equation (4) then gives

(„0)'= A 0(rig +'rb —qx )n3'+' ,'NAlAC"—'(rig ~g )n„n, +C,.

Transforming to the (110}-coordinate system where x-=[001], y
=—[110], and z = [110], we have

(8)

(10)(110) A 0( Iz1 7z3 4»1) x 3 NA Ac ( lz 1z )(ag ny )

Equation (10) depicts the same type of orthorhombic anisotropy as that found for the pair-preference
model in Eq. (1).

For the (112) facet we now find that Eq. (8) is valid but Eq. (6a) becomes

nXI nXI 'IYI-nY19 nX2 nX2 nY -nY2

The site anisotropy under the (112) facet in the (100}-coordinate system is given by Eq. (4) as

E(113)'=2NAl0[(3)x, +rix, )(n, + np )+(1)z,+1)z )n, ]+3NAlAc [2(1)x ~x)n, (n +n3)+(1)z ~z )a. a.,].
Transforming to the 1112}-coordinate system where x=- [111], y = [110], and g = [112], we have

&(„,)'=2NAI0[(3)» +1)x )(-', n„'+ n, '+ 3n +3W2n n )+(Y/z +7)g )(3n +3 n 3v 2n„n )]

(12)

+NAlAc'"[1)z -1)g )(-,'a, '--,'n, '+
—,
' n, '+ ~2n„n, ) 2(1)» -1)» —)(—', n„'--', n3'-~2n„n, )]. (13)

Equation (13) depicts the same type of orthorhombic anisotropy as that found for the pair-preference
model in Eq. (2).

The symmetries of the noncubic anisotropies observed in these flux-grown garnets can thus be ex-
plained equally well in terms of either a pair-preference model or a site preference model. Since
both models depend on the facet normal, it is clear that the predicted anisotropy symmetries must be
consistent with the facet symmetries, and so they are. Unlike the pair-preference model, the site-
preference model will predict a uniaxial anisotropy if only NNT and NNO ions are considered. Inclu-
sion of the NNNT ions results in the proper orthorhombic anisotropy from the site model. Inclusion of
these neighbors is not unreasonable in light of the relative strength of their superexchange interaction
to the rare-earth ions. Finally, we would like to remark that the philosophical distinction between the
two models resides primarily in the interpretation of the crystallization process. In the pair-prefer-
ence model, we assume that clusters of rare-earth and iron cations crystallize at the facet surface
zz~&)tpzpozz)y, and to a first approximation as rare-earth-iron pairs defined by the pair-preference
parameters e, In the site-preference model, the assumption is that the rare-earth ions crystallize
after the iron ions have already solidified and defined the environment and the site-preference param-
eters g, The difference between the site- and pair-bond models at crysta11ization is a1so reflected in

the calculation of the bulk anisotropy; namely, that the preferred pair directions at the time of crystal-
lization also appear in the calculation of the bulk anisotropy (perhaps through local distortions associ-
ated with this preferential pairing, which in turn affect the various pair interactions anisotropically).
For this reason the pair model predicts an orthorhombic anisotropy when only the NNT and NNO ions
are considered, while the site model predicts a uniaxial anisotropy.
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The use of auxiliary single-particle potentials permits the inclusion of the dispersion
effect in the energy of a many-Fermion system calculated in the independent-pair approx-
imation of the Iwamoto-Yamada cluster expansion.

In a, previous paper, ' it is pointed out that the usual Iwamoto-Yamada (IY) cluster expansion' for the
energy per particle of a system of fermions in the independent-pair approximation does not contain
the dispersion effect" of the nuclear medium which already appears in the independent-pair approx-
imation of the Brueckner-Bethe-Goldstone reaction-matrix theory with self -consistent single-particle
energies.

The IY cluster energy in the independent-pair approximation can be written as

where t, is the single-particle kinetic-energy
operator, v» is the two-body interaction, and 0
is a pair correlation operator —a generalization
of the Jastrow correlation function f(r, ,). The
corresponding reaction-matrix energy is 8',
+ W, (U~), where W, =e, =N 'g;(i~t, ~i) and W, (U~)

Q, (ij[G(p~)[ij-ji). The reaction matrix

G(U,) =&-&(Q/e(U ))G(U )

appearing in W, is often calculated with

e(Up) = ti+ t2+ 2' —(6 i+ E2)~

i.e., a constant single-particle potential U~ in
intermediate states and self-consistent single-
particle energies e,. in occupied states. The pro-
jection operator Q in the reaction-matrix equa-
tion ensures that both particles in intermediate
states are outside the Fermi sea.

If the correlation operator 0 in Eg. (1) is taken
to be the reaction-matrix correlation operator
0= 1-(Q/e) G, the pair contribution to the cluster
energy can be expressed roughly as'

e, =(1+2z)W, (U~)-n U~,

z = —Q 'j G—0 ~j-ji)QQ
ee

is the single-particle excitation probability due
to independent-pair correlations. Thus the two
theories give different energies in the indepen-
dent-pair approximation. The absence of the
dispersion term w[U~ —2W, (U~)] in the cluster
energy e, has an effect not only in worsening the
saturation properties of the system, "but also
in the inability to prevent the pair correlation
from becoming unrealistically large' in the orig-
inal variational approach of the IY cluster ex-
pansion. '

We would like to point out in this paper that
this dispersion effect can be made to appear in
the independent-pair approximation of the cluster
expansion if the Hamiltonian

H Q~t~+ gg~sv~s

is written in the familiar form

H=&~ h + zE sv s',
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