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Normal Modes of Vibrations in CuC1

C. Carabatos, * B. Hennion, K. Kunc, t F. Moussa, and C. Schwab*
Centre d'Etudes XucleaA es de Saclay, Saclay, Ivance

(Received 28 November 1970)

The frequency-wave-vector dispersion relation v(q) for the normal vibrations of a
CuC1 single crystal at room temperature has been measured for the [100]-, fll0]-, and
[111]-symmetric directions using inelastic neutron scattering.

In view of the interest in studying the lattice
dynamics of crystals with zinc-blende structure,
we present in this paper the results of coherent
inelastic neutron scattering on cuprous chloride
(CuCl). Our particular attention was drawn by
this material because of its peculiar behavior
relative to other crystals with the same symme-
try, as pointed out by Martin. '

The present experiments were performed by
means of the triple-axis crystal spectrometer at

400—

the EI 3 reactor, Saclay. A collimated beam of
monochromatic neutrons, produced by Bragg re-
flection from a germanium single crystal, was
incident upon the CuCl specimen. The energies
of the scattered neutrons were determined by
Bragg reflection from a second germanium single
crystal. The experiments were carried out by
using either constant-Q or constant-v techniques,
for waves propagating along the high-symmetry
directions [100], [110], and [111].
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FIG. 1. Typical neutron groups obtained on a CuCl single crystal.
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Temperature Dependence of the Charge Oscillation Around Nearly Magnetic Impurities
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In the NMR measurements reported here, it is found that the amplitude of the electron-
density oscillation, e, around manganese and chromium impurities in aluminum is tem-

' perature dependent. Between 180 and 400'K the temperature dependence can be repre-
sented by n(T) =n (0)'[1-(Tje) ], with ™6 740'K for manganese and 5- 960'K for chromi-
um impurities. We suggest that this temperature dependence is brought about by the lo-
calized spin fluctuations at the impurity sites.

In dilute alloys the impurities are surrounded
by an oscillating charge perturbation which can
be given, far enough from the impurity, as' '

6p(r) = (e/r') cos(2k„r+ p).

In simple theories like the Hartree-Fock ap-
proximation of the Anderson model, ' the ampli-
tude of this oscillation is thought to be indepen-
dent of temperature whenever there are no mag-
netic moments on the impurities. ' In this case
the dependence of n on the atomic number Z of
impurities can be expressed using the scattering
phase shifts of the impurities that are, in turn,
simply related to Z through the Friedel sum rule.
It is generally accepted that in aluminum the 3d
transition-metal impurities carry no magnetic
moments. One would expect, therefore, that the
amplitude of the charge-density oscillation as a
function of the atomic number should have a max-
imum between chromium and manganese. In a
recent experiment, ' however, it was revealed
that at room temperature the first-order quadru-
pole wipeout numbers, which are roughly propor-
tional to n, for the dilute alloys Al:Cr, Al:Mn,
and Al:Fe are 1600, 1400, and 1600, respective-
ly. This fact clearly contradicts the Hartree-
Fock theory of the Anderson model. Moreover,
if the wipeout numbers are supposed to be tem-
perature independent, these room-temperature
data contradict even the Friedel sum rule. But,
as was shown by Langreth, ' at T = 0 the Friedel
sum rule is valid in the Anderson model whenev-
er the perturbation expansion in terms of intra-

atomic Coulomb interaction, U, can be applied.
So the temperature independence of wipeout num-
bers would invalidate experimentally any pertur-
bation-theoretical approach in the Anderson mod-
el even in the nearly magnetic limit. Our pur-
pose was, therefore, to see whether the wipeout
numbers for Al:Cr, Al:Mn, and Al:Fe are tem-
perature dependent or not and, if they are, where
this temperature dependence comes from.

The redistribution of the electronic charge
around impurities yields a field gradient'

a(r)=( 8/ )3) 6p(F), (2)

D/Do = (1—c)", (3)

where n is the signal intensity of the pure host.
In aluminum alloys of low impurity concentra-
tions the first-order quadrupole effect dominates,
so Ec(. (3) refers to the satellite transitions only,
and the change of the central component can be
neglected. It has been shown' that the phase y in
(l) is not essential in the analysis, and the first-
order wipeout number n defined in (3) is propor-
tional to the oscillation amplitude e. Therefore,
by measuring the signal amplitude of the host nu-
clei as a function of the impurity concentration,
the amplitude of the charge oscillation can be de-

where p. is the enhancement factor (for aluminum
p, -23). The distribution of the field gradient
gives rise to a reduction of the host NMR signal
intensity D, defined as the peak-to-peak ampli-
tude of the derivative signal. At impurity concen-
tration c,


