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ble I.
In the table, ~,* is the skin time without the vis-

cosity correction.
It thus appears that the anomalous skin effect,

as observed in Tokamaks, may be traceable to
this effect. An experimental check should be rel-
atively easy, especially if the time of current
penetration is measured after the plasma is heat-
ed to a relatively high temperature. Oscillation
over the ion cyclotron frequency should also be
measurable.

Somewhat paradoxical results are indicated in
Eq. (22), because it may appear that increasing
the drift velocity increases &, . However, in re-
ality ((n —n, )'/n, ')» should be a function of v«,
and presumably an increasing function. This
probably compensates for the inverse-square de-
pendence on v«.

Aside from the application to the Tokamak, this
mechanism may also be responsible for the anom-
alously thick skin of collisionless shocks perpen-
dicular to the magnetic field, as well as the
anomalous viscosity hypothesized by Morse and
Stovall. '

Furthermore, we have introduced here a new

concept for the mechanism of transport of vari-
ous plasma parameters. This technique may be
useful for calculating heat conductivity and diffu-
sion coefficients.

In the absence of both this viscosity effect and
ion Landau damping, the electron and wave mo-
menta would reach equilibrium values such as
predicted by Drummond and Pines' and the re-
sistivity due to the phonon-electron interaction
would disappear. Thus either ion Landau damp-
ing (which also leads to anomalous resistivity) or

Table I. Skin times calculated for different electron
temperatures.
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anomalous viscosity is essential in explaining the
anomalous skin effect.
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We examine a recent proposal by Goldstein for producing very low temperatures by
freezing He in the presence of magnetic fields. We conclude that the highly isotropic
nature of solid He will completely suppress the particular cooling mechanism envisaged,
but a related magnetothermal effect should be observable. At readily accessible temper-
atures this effect will be small, but below about 1 mK a potentially useful amount of mag-
netic cooling is predicted. The field required for the maximum cooling is about 70 kOe.

In a recent Letter, ' Goldstein proposed a new

method for obtaining extremely low temperatures
by freezing He in the presence of a magnetic
field. It was implied that the method depends on

the peculiar nature of the anisotropy of solid He',
but the precise role of the anisotropy was not
discussed explicitly. ' In this note we wish to
point out that (1) the particular mean-field calcu-
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1Rtlon carried out by Goldstein is appropriRte on

ly when the anisotropy is large, and such an an-
isotropy can be ruled out on the basis of published
NMR result's; (2) the mean-field calculation ap-
propriate to an isotropic solid, which Goldstein
intended to treat, ' indicates no magnetic cooling
whatsoever; and (3) a linear spin-wave calcula-
tion which should be much better than mean-field
theory at low temperatures does in fact indicate
a potentially interesting cooling effect, but with
a behavior significantly different from that de-
scribed by Goldste1. n.

For example, if solid He~ were produced at the
melting pressure in zero field with an entropy of
0.05R, its temperature would be about 1.2 mK.
The mean-field calculation of Goldstein predicted
thRt the application of R field of Rbout 27 kQe
would reduce the temperature for this case to
about one eighth of the zero-field value, a strik-
ing and potentially useful effect. On the other
hand the mean-field calculation appropxiate to an
isotropic system gives no cooling upon applica-
tion of any field, and the more accurate spin-
wave treatment shows that the temperature would
in fact be reduced by only about one-half, but
thy. t this would require a field of about 70 kQe.
'We conclude, therefore, that while Goldstein's
interesting idea of cooling solid He by using
magnetic fields is physically correct, the detailed
mechanism will in fact make the effect fax less
dramatic than that proposed and less accessible
experimentally.

We first note that the process described in
Ref. 1 can be carried out in two steps. First one
could freeze liquid He' by adiabatic compression
in the usual way34 and then one could apply a.

field to magnetize the He'. The first step mill
result in solid He' at some temperature T, with
a corresponding entropy S(T»H=O). The value
of T, wi11 of course depend on the initial condi-
tions of the liquid, but this part of the process
is irrelevant for the present discussion. The
vital question is whether a different temperature
T, significantly lower than T, can be achieved
by the further application of a magnetic field IJ.
To obtain the largest possible cooling it is clear-
ly most RdvRntRgeous to consider the field 3p-
p1ied adiabatically and reversibly, Rnd in this
ease S(T„H)=S(T„H=0). Since the entropy at
constant field is always a monotonically increas-
ing function of T, a sufficient condition for T,
to be less than T, is (SSjBH)r &0, as pointed out
by Goldstein. ' The problem then boils down to
finding a situation where this condition holds,

and where, moreover, (SSjSH)r is large over an

appreciable range of fields.
For most magnetic systems, (SS/sH)r is in

fact negative, corresponding to ordering imposed
by the magnetic field, and cooling can only be
obtained by adiabatic demagnetization. Excep-
tions to this rule may occur in multisublattice
systems, such as antiferromagnets, since the
gain in entropy of part of the system may then
exceed the reduction in the rest.

A good example of this ls the cRse discussed
by Goldstein. Following Garrett' he considexed
a two-sublattice antiferromagnet in a field ap-
plied parallel to one of the two sublattices, and
he calculated the change of entropy with field as-
suming that the two sublattices remain in their
initial collinear configuration. This assumption
implicitly demands an amount of anisotropy suf-
ficient to stabilize this Arrangement, and in the
specific calculation used by Goldstein, "this an-
isotropy was assured by considering only the
Ising-model pax t of the complete interaction
Hamiltonian and neglecting all transverse terms,
This approximation is in fact not stated explicit-
ly either by Goldstein or in the earlier paper by
Garrett, ' and indeed both seem to imply that the
model is valid for a two-sublattice, isotropic
(Heisenberg) antiferromagnet. This is not the
case, however, since in the limit of a complete-
ly isotropic system there is a very different type
of solution which in fact always has a lower en-
ergy. This solution corresponds to the well-
known' spin-flop phase of usual antiferromRgnets
and it implies that no matter in which direction
the field is applied, the sublattices will turn so
that they are initially perpendicular to JJ. The
variation of entx'opy with field in this configura-
tion is of couxse quite different from that in the
parallel case.

It is therefoxe of paramount importance to de-
termine the nature of the appx'opriate interaction
Hamiltonian before attempting to calculate the
thermodynamic properties usi.ng one of the sta-
tistical approximations. In the past it has al-
ways been assumed "' that the dominant term for
Hes is an isotropic coupling between the neaxest-
neighbor nuclear spins,

and that the only anisotropic terms arise from
the much weakex magnetic-dipole coupling
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with A, „=g„'p„.'/r, ,', where F,, is the distance
between spins i and j and g„ is the nuclear g fac-
tor. Fitting J to various empirical data such as
the susceptibility, ' specific heat, and nuclear-
spin-relaxation times, ' it has proved possible to
obtain a generally consistent explanation of the
available data; and the adequacy of a Hamilton-
ian of the form K=K, +X„has never really been
called into doubt. However, inasmuch as Gold-
stein's proposed cooling method would demand
an anisotropy many times larger than that pro-
vided by K„, it now becomes important to ex-
amine critically whether additional terms in K
can really be excluded by the available data.

Support for a Hamiltonian of the form K, plus
anisotropic terms with the same form as Eq. (2)
but with unspecified magnitude is provided by
the observed frequency dependence of the trans-
verse NMR relaxation time T„which obeys quite
accurately the "'~ effect" increase as the mea-
suring frequency is varied. ' The observed fre-
quency at which the effect takes place provides
a measure of the isotropic exchange 4, and this
is in good agreement with other estimates. ' '
Using the measured values of T, and J, one can
then estimate the order of magnitude of the aniso-
tropic terms; and one finds general agreement
with the magnitudes given by K„, about three or-
ders of magnitude smaller than K, in the region
of interest io

If we now consider the macroscopic consequenc-
es of such a Hamiltonian applied to He' in its
bcc phase, we find a further reduction in the ef-
fective anisotropy as a result of the overall cubic
symmetry. This has the effect of reducing the
first-order contribution of any dipolar anisotropy
identically to zero so that only higher order con-
tributions will be effective. The precise size of
these is quite difficult to estimate, especially if
we allow for the possibility that the sublattices
may not remain collinear, but we can readily
estimate the order of magnitude" as -A'/J. We

thus see that the effective anisotropy is some six
orders of magnitude smaller than the isotropic
part of the energy, so that it is quite clear that
the Ising model must be an extremely poor ap-
proximation.

Conversely, we can conclude that the complete-
ly isotropic Heisenberg Hamiltonian should be a
rather good approximation and it is now of inter-
est to ask if this will show any significant mag-
netothermal effects.

Using the same mean-field approximation as
that used by Goldstein and Garrett, but including

E

H

H(0}-
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FIG. 1. Mean-field calculation of the phase boundary
and isentropes for a spin I =2 bvo-sublattice Heisen-
berg antiferromagnet with inter sublattice exchange
only. 7» sJI(I +1—)-/3k& is the Neel temperature, where
z =number of neighbors (8 for the bcc lattice), and
II, (0) =4k&TN jg„p„. The broken line divides the para-
magnetic phase denoted by P from the "spin-flop"
phase denoted by S.F. In a reversible adiabatic rnag-
netization experiment, the system moves along a line
of constant entropy. The lines labeled a, b, c, d, e,
and f correspond to S/Nks ——ln2-(0. 6, 0.5, 0.4, 0.3,
0.2, and 0.1, respectively), where N is the total num-
ber of spins.

the effect of the transverse terms, we can read-
ily calculate the phase boundary and isentropes
shown in Fig. 1. It can be seen that the lines
within the antiferromagnetic phase [P&II, (T)]"
are straight and vertical, corresponding to the
condition (BS/B H) r = (BM/B T)„=0. This corre-
sponds to a well-known result due to Weel" that
the perpendicular susceptibility of an antiferro-
magnet is independent of field and temperature
in the mean-field approximation. We see, there-
fore, that far from obtaining a dramatic cooling
effect, the mean field theory pr-edicts no cooling
of any kind.

Qf course for the real system the isentropes
will not be exactly vertical. One factor contribut-
ing to nonzero magnetothermal effects will be the
small but finite anisotropy and in principle this
could be included in the mean-field calculation,
provided the anisotropic terms are included cor-
rectly to second order. However, it seems quite
clear that an effective anisotropy of one part in
10 will not affect the thermodynamic properties
significantly, and we have therefore not carried
through the rather complex calculation.

Far more important is the inadequacy of the
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mean-field approximation itself. Since there are
no theories which accurately descxibe a large
interacting spin system at all temperatures, we
must consider various limiting cases to obtain
an impxoved description of the entx'opy. Follow-
ing Johnson et al. , '~ we have used lineax' spin-
wave theory for the entropy at low temperatures,
with a graphical interpolation to meet the entropy
curve calculated from a high-temperatux'e se-
ries" "at TN. The results for zex'o field are
shown as the solid line in Fig. 2. To obtain an
estimate of the maximum entropy difference in a
field, we consider the system close to the anti-
ferromagnetic -par amagnetic phase boundary,
IJ=H, (T), where the field is just strong enough
to ovexcome the antiferromagnetic exchange and
align the spins. " In this state the spin-wave
spectxum becomes similar to that in a ferromag-
Qet with a dispersion law A~ o-. k', in contrast to
the zex'0-field Rntlferromagnet foI' which SR (:~:Q.
Correspondingly, the entropy for this state var-
ies as T"', compared with the zero-field varia-
tion pxoportional to T3, and this results in the
variation with temperature shown by the dashed
line in Fig. 2. Here we have again extrapolated
the exRct low temperature VR1 1RtloQ to meet the
calculated zero-field entx'opy at T = TN. We see
from Fig. 2 that the isentx'opic application of a
magnetic field at the very lowest tempex'ature
should result ln R slgnlflcaQt amount of cooling&
but that the effect should become quite small as
T Rppx'oaches Tg Rs pI'edlcted by the cox'I'e-
spondi. ng mean-field calculation. Si.milax behav-
ior has been found in exact solutions of linear
Heisenber g chains. "

It is clear that our estimates of the entropy
could be refined in different ways and indeed it
would seem worth making a detailed study of the
magnetothermal properties of solid Hes to throw
further light on both the nature of the interactions
and the statist:ical approximation used to calcu-
late thermodynamic properties. However, we
can conclude even now that the cooling which can
be produced by the application of a magnetic field
OQ He'will be very much harder to obsexve than
the effect predicted in Ref. 1.

We are grateful to Dr. I.. Goldstein for clarify-
ing some of the ideas contained in Ref. 1 and for
sending us a px'eprint of his full paper2 on the
subject. We would also like to thank Dr. J. C.
Bonnex for a numbex of helpful discussions.

Ãofe added in proof. —Similar conclusions con-
cerning the approximations used in Ref. 1 Rnd
the predictions of linear spin-wave theory have
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FIG. 2. Estimated VRllRtlon of entropy with tempex'R-
ture for solid He assuming isotropic nearest-neighbor
exchange with 4/kq -1.44 mK (Ref. 14). The solid curve
corresponds to zero field, and was derived following
Ref. 14, using an exact spin-wave result (S/8 ~ T ) for
the low-temperature part, and a nine-term series ex-
pansion for the high-temperature part I'down to TN =2
mK). The intermediate range is estimated using an
approximate extxapolation of the spin-wave result ad-
justed to join the two curves at TN. The broken curve
le R slmllRr estimate for fields Rlong the antlferlomRg-
netic-paramagnetic phase boundaxy. In the low-tem-
perature spin-wave region where H, (T) =H, (0) = 74 kOe,
the entropy S/8 ~T3~/~ as T—T II (T) 0 and the
curve converges with the zero-field estimate.

recently been reached by Walstedt, Walker, and
Varma. "
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The thermoreQectance of graphite has been measured in the energy range 4.4 to 5.5 eV
at 80'K. Three peaks at 4.52, 4.76, and 4.82 eV have been identified as M~-type singular-
ities and assigned to transitions taking place at the points Q and L in the Brillouin zone.

A new spectrum of the thermoreflectance of
graphite near the 4.8-eV optical transition, which
differs markedly from another measurement, ' is
presented. A splitting of this transition, due to
multilayer interaction, is observed for the first
time. The observed transition energies of 4.76
and 4.82 eV are compared with other optical mea-
surements that localize the transition at 4.6,"
4.8,' and 5.1 eV.' From a line-shape analysis
of the thermoreflectance peaks the transitions
are identified as M, -type singularities. The ther-
mal modulation effect appears to be mainly due
to gap-energy shift, while broadening modulation
gives a minor contribution. The measurements
provide evidence for an inversion of the parity
of the v-electron states at point Q as proposed
by several band-structure calculations, "' but
in disagreement with other calculations" which
predict two peaks in the the rmoreflectance spec-
trum separated by 1.6 eV.

The measurements have been performed using
a rectangular crystal of stress-annealed pyroly-

tic graphite' glued to a copper heat sink, which
was cooled to liquid-nitrogen temperature. The
sample was cleaved to a thickness of about 0.2
mm prior to its installation into the vacuum sys-
tem, where it was kept at a pressure of 10 '
Torr. Temperature modulation was achieved by
passing a square-wave current at 3.6 Hz with
an amplitude of 2 A rms through the sample, cor-
responding to a power dissipation of 0.1 W/cm'.
The mean temperature of the sample was 80'K,
the temperature modulation amplitude being 1.4 K
peak to peak. The sample was illuminated under
45' angle of incidence with light from a high-
pressure mercury lamp after passing through a
monochromator with a spectral resolution of
0.06 eV.

The results of the thermoreflectance measure-
ments between 4.4 and 5.5 eV are shown in Fig. 1
as a solid line. The effect of thermal modulation
may be considered as a superposition of broaden-
ing and stress modulations. The stress may be
regarded as uniaxial parallel to the c axis, be-
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