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Anomalous Viscosity as a Possible Explanation for an Anomalous Plasma Skin Effect
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Anomalous viscosity of electrons across the magnetic field in plasmas is calculated,
assuming that the electrostatic ion acoustic wave is excited by the drift velocity of elec-
trons parallel to the magnetic field lines. The mean free path of the wave perpendicular
to the magnetic field is estimated. The momentum transfer rate between waves and elec-
trons, T, also was calculated from the quasilinear theory. The anomalous (kinematic)
viscosity was then estimated as l 7 . The theory appears to explain the experimentally
observed results of the anomalous skin effect.

It has remained a mystery why there appears
to be no detectable skin effect in Tokamaks; that
is, the laser electron-temperature-profile mea-
surement failed to show the increase in the tem-
perature at the periphery. This obviously can be
explained in two ways. One is that there is an en-
hanced heat conductivity to the center which
makes the temperature profile almost flat, in
spite of the fact that current distribution is re-
stricted to the surface. The second is that there
is an anomalous skin effect which allows the cur-
rent to penetrate to the center. Although this was
not experimentally checked in Tokamak devices,
it is known that the (9-pinch and collisionless
shock waves have an anomalous skin effect.
Here, we propose that an anomalous viscosity
may give rise to the anomalous skin effect. This
also implies that the anomalous skin effect need
not be equivalent to anomalous resistivity. Ex-
perimentally, the resistivity found after the To-
kamak plasmas are established cannot explain
the seemingly rapid penetration of the current
across the magnetic field. This concept of anom-
alous viscosity was introduced by Morse and
Stovall' to explain the observed field reversal in
~ pinches.

The physical model we propose here is very
simple. We assume that the plasma density n, is
uniform, that the electron temperature T, is con-
stant, and that the ion temperature is negligible.
The current density, which is carried by elec-
trons, has a gradient in the x direction and a
strong, constant magnetic field in the ~ direction.
The ion-plasma frequency ~~; is considered to be
much higher than the ion cyclotron frequency 0;.
The system is unstable against many modes,
such as the two-stream instability and ion acous-
tic waves. We assume that the nonlinear limit
has set in. Thus, the plasma no longer is quies-
cent, but has a finite density of phonons. Since
ion temperature is assumed to be cold, no strong

interaction appears between phonons and ions, al-
though the interaction may play a part in setting
the nonlinear limitation of phonon density. The
electrons then interact with the phonons and ex-
change momentum. The momentum is then car-
ried by phonons across the magnetic field and im-
parted to the electrons whose parallel velocity is
smaller than the phase velocity of the phonons.
In this way the momentum is carried out from
one electron to another electron via phonons.
Therefore, if we know the density of the phonons,
n~ (m '), the collision rate between a phonon and
an electron, S (m'/sec), and the mean free path
of the phonon perpendicular to the magnetic field,
f (m), then the kinematic viscosity perpendicular
to B is given by n~Sl'. We now try to estimate 8
and l. Unfortunately, n~ cannot be estimated un-
less the full nonlinear equation is solved. In-
stead, as will be explained, we shall express the
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FIG. 1. (a) Drift velocity vd and growth rate p as a
function of x (perpendicular to the magnetic field).
(b) Wave propagation, +x direction and absorbed for x
&0. The momentum parallel to B is transferred from a
point x&0 to another point, x&0.
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phonon density in terms of the plasma density
fluctuation.

In practice, instead of phonons we calculate the
wave-electron interaction, which is the classical
picture of the phonon interaction.

As waves that have perpendicular group veloci-
ty, we chose electrostatic ion cyclotron waves. '
For the wave with an exp[i(cut+k„x +k,z)] depen-
dence, s the dispersion relation is

0 ~ (d

Here, A. D is the Debye length of electrons. We
look for the solution for which the electron drift
frequency is of the order of ~&u/k, ~. Then, pro-

vided that the drift frequency is higher than the
plasma sound velocity (which we assume),
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Waves propagate in this frequency range:
We restrict to ourselves waves for

which x «mp . Then,
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The growth (or damping) rate of this wave can be
easily calculated from the standard Landau damp-
ing calculation. We take the zeroth-order distri-
bution function as a -displaced Maxwellian. The
result is

(d . M 1 k'zk„'v,'= (co' —0 ) 1+ ——-v„~if„-——
here fo, is the zeroth-order electron distribution function. The growth rate y is given by [for ~~/k, (

«(kT, /m)'~']

a,* (aT„~)'"(~)'"(.,a.
)

Thus, if v„k,/~ & —1, the plasma is unstable.
We first estimate the mean free path of the wave perpendicular to the magnetic field. There, noting

that v„ is a function of x {Fig. 1), we take y = y{x)exp[i(er+k, z)]. Then we write, instead of Eq. (4) (we
take k, & 0),

Assuming that the second term in the bracket is small, we apply the eikona, l approximation, obtaining

7I' 'fpg dx k~y(x)=exp(ik, x) exp — — v, ———
Z 8

In order to estimate the integral, we choose the coordinates so that v~ =v„(x/J-)v«, with v~,—and I.
positive. We expect that &«and v„, are comparable to the typical drift velocity of electrons. Near x
=0, v„&0, so only the w/k, &0 wave is unstable. We calculate the penetration depth for the phase ve-
locity a&/k, = —v~, . Then (—x/k, —v, )=v«x/I-. Equation (7) then becomes

in„X~„„~ ~ ~/2

cp(x) = exp(ik, x) exp —— " '"—,x & 0.
e

The depth l for which the amplitude decreases by a factor e "' is

(S)

The interaction of the wave with the electron distribution function can be estimated from the quasilin-
ear theory. '' In the absence of the external electric field and collision, and if E is not too large (for
more detail, see Sec. 6 of Ref. 5),

Bf, 1 Bf, 1 8' '| s (-w k,v„)—'= —Re 'Z, * = — ReIE, 'y ' " f„(v) (10)
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with I', -=Jv, f,du. Thus, noting that y &0 corresponds to

(12)

we find that I" changes by I'o in the time 7, with

1+ kg.

Therefore, the kinematic viscosity is estimated to be

(14)

where the summation sign indicates the sum over all the modes. We may rewrite Eq. (14) as

2ar, X g a.u.. ep ' ~ (av'.)"* (ar,)'*1 aT',
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where the average is taken over all the modes. This average is taken of the order of unity and denoted
by C. We also note that ey/kT, = n/n, from the dispersion relation where n is the density perturbation.
Hence,

kTe1kTeC8 fin

with the assumption that the (n-n, )' average is taken over the frequency region between 0; and &u~,.
L is related to the drift velocity density gradient, and may be approximated as I/L = ~d(lnv„)/dx~.

With this kinematic viscosity given, it is possible to estimate the skin effect. Equations to govern
the skin effect are given by

(V && B).= u;~. = -e V.l'. ,

and (vc is the Coulomb collision frequency)

en+, =+m p.V'I, -m vcI', -m SI',/St.

Introducing vector potential A, and applied constant electric field Fo i.n the ~ direction, we get

(m pV'-m vc,)V'A, = m V' ' e'g n, o' -+ e'g, noE, .

(20)

We now determine the time constant for a slab with the thickness of 2x,. (Asymptotically, the solution
is A, = - e'xp, , En, /2 vmc. ) The normal-mode solution for the lowest eigenmode is then

A. =A. --— m —',
1 1 TI' gyes v 1 1

2&+~C 2 2 2 2 ~

e p, ono 4 xo 4 xo I + 7T e /4xo h)pe
(21)

Here, ~~,/2v is the electron plasma frequency. The gradient distance I. is estimated to be 2x, /m.
Then

4e'p, „n„x„' C kT, ' ' kT, (n —n„)' ' ~'c'
m yn x M msq n 4XO (dp,

(22)

Now the estimate of the new term is in order. For the Tokamak, ' we assume that ((n-n, )'/n, ') =10 ',
x, = 10 cm, C = 1, M/m = 1800, n, = 2 && 10"cm ', kT,/mv„' = 10'; we then have the figures shown in Ta-
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ble I.
In the table, ~,* is the skin time without the vis-

cosity correction.
It thus appears that the anomalous skin effect,

as observed in Tokamaks, may be traceable to
this effect. An experimental check should be rel-
atively easy, especially if the time of current
penetration is measured after the plasma is heat-
ed to a relatively high temperature. Oscillation
over the ion cyclotron frequency should also be
measurable.

Somewhat paradoxical results are indicated in
Eq. (22), because it may appear that increasing
the drift velocity increases &, . However, in re-
ality ((n —n, )'/n, ')» should be a function of v«,
and presumably an increasing function. This
probably compensates for the inverse-square de-
pendence on v«.

Aside from the application to the Tokamak, this
mechanism may also be responsible for the anom-
alously thick skin of collisionless shocks perpen-
dicular to the magnetic field, as well as the
anomalous viscosity hypothesized by Morse and
Stovall. '

Furthermore, we have introduced here a new

concept for the mechanism of transport of vari-
ous plasma parameters. This technique may be
useful for calculating heat conductivity and diffu-
sion coefficients.

In the absence of both this viscosity effect and
ion Landau damping, the electron and wave mo-
menta would reach equilibrium values such as
predicted by Drummond and Pines' and the re-
sistivity due to the phonon-electron interaction
would disappear. Thus either ion Landau damp-
ing (which also leads to anomalous resistivity) or

Table I. Skin times calculated for different electron
temperatures.

kT~

(eV)
S

(m sec)
S

(msec)

100
400

1000
2000

2.1
1.45
0.95
0.65

7.2
57.6

220
640

anomalous viscosity is essential in explaining the
anomalous skin effect.
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We examine a recent proposal by Goldstein for producing very low temperatures by
freezing He in the presence of magnetic fields. We conclude that the highly isotropic
nature of solid He will completely suppress the particular cooling mechanism envisaged,
but a related magnetothermal effect should be observable. At readily accessible temper-
atures this effect will be small, but below about 1 mK a potentially useful amount of mag-
netic cooling is predicted. The field required for the maximum cooling is about 70 kOe.

In a recent Letter, ' Goldstein proposed a new

method for obtaining extremely low temperatures
by freezing He in the presence of a magnetic
field. It was implied that the method depends on

the peculiar nature of the anisotropy of solid He',
but the precise role of the anisotropy was not
discussed explicitly. ' In this note we wish to
point out that (1) the particular mean-field calcu-


