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The specific heat and temperature derivative of the resistivity of P brass have been si-
multaneously measured near its order-disorder transition and found to be proportional.
An extension of the Fisher-Langer theory for magnetic transitions is used to explain the
results.

Several years ago Fisher and I anger predicted
that the contributions to the specific heat and
temperature derivative of the electrical resis-
tivity associated with a, magnetic phase transition
are proportional. ' This prediction has been ver-
ified for the ferromagnetic transition in nickel, "
but seems to fail for the antiferromagnetic tran-
sitions in chromium and dysprosium, ' at least
in their polycrystalline forms.

We have chosen to investigate in detail the
specific heat and resistivity near the order-dis-
order transition in P brass for the following rea-
sons: (1) The temperature derivative of the re-
sistivity is known to have the same qualitative
behavior as the specific heat. " (2) The spe-
cific heat of P brass has been accurately mea-
sured' and can be used as a check of our results.
(3) High-quality samples were available to us.
(4) The Fisher-Langer theory can be applied to
order-disorder transitions in binary alloys.

The ac calorimetry technique used by Ashman
and Handler to measure the specific heat of P
brass' has been extended to include a simulta-
neous determination of the temperature deriva-
tive of the resistivity. In this method, a small
sample is periodically heated with chopped light
from a quartz-iodide bulb. In the proper fre-
quency range (19 Hz was used in this experiment),
the amplitude of the temperature oscillations of
the sample is inversely proportional to its spe-
cific heat. These oscillations are detected by a
Chromel-Constantan thermocouple with one
junction spot welded to the sample and the other
attached to a heat sink at the ambient furnace
temperature. The amplitude of oscil1.ations is
measured with a lock-in amplifier whose output
is recorded on a multipoint chart recorder. A

second Chromel-Constantan thermocouple with
one junction spot welded to the sample and the
other in an ice bath monitors the dc temperature
of the sample. This thermocouple voltage is
measured with a potentiometer using a micro-
voltmeter as a null detector, and recorded as a
second trace on the chart recorder.

The temperature derivative of the resistivity
is obtained at the same time as the specific heat
by passing a constant current of 0.26 A through
the sample. The voltage oscillations induced by
the temperature oscillations of the sample are
detected with a second lock-in amplifier and re-
corded as the third trace on the chart recorder.
After measuring the dc voltage drop across the
sample at 25'C, one has the geometry-indepen-
dent quantity

1 dp 1 AU(T)

p25o( d T p U250 c l5IT(T)

where 6 V and AT are the magnitudes of the vol-
tage and temperature oscillations, respectively,
at temperature T. Good temperature resolution
is achieved since the rms temperature oscilla-
tions are typically 0.01 K near the transition
temperatur e.

The sample of p brass used in this experiment
was cut from the same boule used by Ashman for
his specific-heat measurements. ' It contained
52.3+0.l%%uo Cu and 47.7 +O. leuc Zn. A sample was
spark cut and thinned by mechanical and electro-
polishing techniques to final dimensions 6.0mm
&1.5 mm x0.1 mm. It was blackened with a thin
layer of Aquadag graphite dispersion for maxi-
mum absorption of the light and mounted in a-
modified version of Ashman's sample holder. '

Results of the measurements are shown in
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FIG. 1. Temperature derivative of resistivity versus
specific heat of P-brass for data above (triangles) and
below {circles) the temperature of the maxima. The
lower curve has been displaced downward by 0.001'K i

for clarity. Decades of e are indicated by the vertical
lines.

IO

Figs. 1 and 2. In Fig. 1, C~, normalized to
Moser's data" at 539'C, is plotted against z~
for data above and below T, the temperature at
which the maxima occurred. T was measured
as 466.0 + 1.0'C, the uncertainty being due to the
calibration of the dc thermocouple. Tempera-
tures could be measured relative to T with an
accuracy of better than 0.002'K, since the ther-
moelectric power of the Chromel-Constantan
pair is virtually constant in the temperature
range of interest. It was therefore possible to
determine that the maxima of C~ and n~ coin-
cided to within 0.01'K.

We estimate that the normal phonon and elec-
tronic background to C~ varies by less than 0.5/o

of the peak value over the range of data shown in
Fig. 1. The noncritical part of n~ is estimated
to change by less than 1/e of its peak value over
the same range. Hence, the linear relationship
shown on the graph indicates that the eritieal
contributions to C~ and e~ are proportional over
four decades of e=—IT-T I/T, both above and
below T . The small deviation from linearity
for T) T and ~&1.5&&10 ' is believed to be
caused by a time-constant effect in the lock-in
amplifers which appears when the signals are
changing most rapidly in time. Individual plots
of C~ and n„vs T are shown in Fig. 2. We note
that the relation C~ ~ n„holds even within 0.04'K
of the maxima (e (5 &10 '), where C~ and n„are
individually rounded. It is therefore likely that
the same mechanism is responsible for the round-
ing of the two quantities.

The type of comparison shown in Fig. 1 does
not depend on the assumption of a power-law

~ ~

.OIO- . ..~ ~"
~ ~ ~

.008-

.006-

462 464 466
T(oC)

t~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~-

468 470

FIG. 2. (a) Specific heat of P bra-ss versus tempera
ture. (b) Temperature derivative of resistivity versus
temperature.

where x= q/2k~ and A(q) is the pseudopotential
matrix element for the alloy, suitably averaged
over the direction of q. For an alloy such as p
brass it is convenient to introduce the notation
cr,. = +1 for the occupation of the ith lattice site by
an atom of Cu or Zn, respectively. Approximat-
ing the effective potentials of the individual ions
by 5 functions of strengths W, for Cu and W, for
Zn, and assuming a rigid lattice, we may write

A( )= E;I(1+;)W +(1-;)W j~( -R;), (3)

where the sum is taken over the lattice sites R,
The Fourier transform of (3) may be written

A(q) = (2&) (Ã/y)W5(g) ~Ã j ~ W

divergence for C~ or e~, nor does it require the
assignment of a critical temperature. We feel
that this approach is more appropriate than the
standard method of testing the proportionality
of C~ and e~ by comparing critical exponents. "'
Therefore, no attempt has been made to fit our
data with a power- law divergence. Comparison
of our C~ curve with Ashman and Handler's'
shows good agreement, although our data are
more rounded and consequently have a lower
peak height. The resistivity of binary alloys has
been examined recently by Bhatia and Thornton
using the pseudopotential approximation. " Above
the Debye temperature, the resistivity is given by

+2

(2)
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with W=(W, + W,)/2, AW=(W, -W, )/2, and

cr, =N '~'Q exp(iq R,.)o, , (5

the sum over g denoting an average over the di-
rection of q. Substituting (4) into (2), we get an
expression for the xesistivity due to deviations
in the average periodic potential:

5 e'kF' V

Expression (6) is very similar to the contribu-
tion to the electrical resistivity from spin-dis-
ordex' scattering i.n a magnetic system. ' Unlike
the Heisenberg ferromagnet considered by Fisher
and I anger, however, there is no temperature-
dependent incohex'ent scattering since the average
potential W has no critical behavior. We also
note that the appearance of energy gaps at the
Fermi surface upon ordering would have a pro-
nounced effect on the resistivity, as observed
in several of the rare earths""; however, band-
structure calculations in the ordered phase of p
brass show no gaps at EF attributable to the re-
duction 1Q the dimensions of tll zone. It follows
that (6) should be valid both above and below the
transition temperature.

As i.n the spin-disorder case, the most impor-
tant contributions to p al lse from the scattering
of electrons across the Fermi surface, that is,
for x= 1. Thi.s implies that fluctuations in the
short-xange order with an extent r &kF ' are
most effective in scattering conduction electrons.
Since the Fermi suxfaee nearly fills the zone, "
correlations between nearest neighbors will pre-
dominate.

The contribution of the short-range ordex' in

P brass to the energy density may be expressed
in the Ising-model form"

where the sum is taken over nearest-neighbor
ion pairs. Since the nearest-neighbor correla-
tions determine the temperature dependence of
both p, (T) and U, (T), we are led to the same con-
clusion as Fisher and I anger —that p, (T)~ &,(T)
and, therefore, that e~(T) ~C~(T). It is this
relation wlllch ls directly ver1f led ln F1g. 1.

We expect our results to apply to othex' binary
alloys exhibiting second-order phase transitions,
such as FeCo and Fe,Al." Further ezper1mental
work on these materials 18 eQcoux'aged.
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