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Behavior of Two-Point Correlation Functions at High Temperatures*

g/iiiiam J. Campj' and Michael E. Fisherf
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(Heceived 30 November 1970)

The asymptotic decay of the general two-point correlation function G~(H) at high tem-
peratures is analyzed on the basis of the d-dimensional, spin-p ising model in general
field H. For H& 0 the Ornstein-Zernike form ~D~D&e ' /H(~ i&~ is found for general A
and B. However for certain operators, including the energy, the amplitude of the Orn-
stein-Zernike term vanishes as H and in zero field only the higher order decay -e /R"
remains. The relation to approximate treatments and to critical-point phenomena is dis-
cussed briefly.

The asymptotic behavior as R —~ of the correlation functions

G„,(R„R)= (A (R, )I}(R,+ R)) -(a(R, ))(f}(R,+ R))

is of considerable interest in the general theory of condensed matter. Thus in the scaling/homogenei-
ty description of critical phenomena, the form of the decay is believed to specify the behavior of the
basic scaling functions for large argument' '; the asymptotic decay is also a touchstone of the validity
of approximate theories. In a d-dimensional system with short-range forces, the Ornstein-Zernike
(OZ) and phenomenological Landau-type theories predict' s

G q, q, (R„R)= Dqq, e /R ' ' as R- ~ (2)

provided R, is far from the boundaries. Here 4(r) is the'order parameter with conjugate field & and
v=a(&, T) is the inverse range of correlation. In a lattice system v and Dqq, (g, T) will also depend upon
the orientation of R. It can be argued heuristically' that the form (2) should remain valid with the
same x, for arbitrary operators A and B. This generalized OZ hypothesis may be tested against the
exact results for two-dimensional ising models: For field H = 0 and + &T~ lt is (i) confirmed for the
spin-spin correlation function G q, q, , but (ii) fails for the energy-energy correlations G qq, where 2x re-
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places ~ and the exponent &(d —1) = 2 becomes 2. (The hypothesis also fails below T„butwe discuss
that in a. subsequent article. ) It is important to understand the generality and form of this failure.
Thus Jones has suggested that (2) might fail only on special loci in the (f, T) plane on which the ampli-
tude D» happened to vanish. ' Higher-order terms must presumably then take over but no general sug-
gestion as to their form has yet been made. Unfortunately, except at high fields (or low densities
where the virial expansions are proven to converge), no exact information is available for H t 0, for
d &2, or for other operators.

In this note we report calculations for classical spin systems (where P =H) which go beyond this gen-
eral hypothesis to yield

C,»(R„R)=D„"g, T)D, "'(H T)(s "'/R'" "')[I+O(H ')]

+DA ~ (H, T)D~ '~(H, T)(e '" /R")[I+O(R ')]+O(e "") (3)

as R —~, provided R, is far from all boundaries. (In a subsequent note, we consider R, close to one
or more plane boundaries. ) In zero field, the amplitudes D'"' vanish identically unless A contains
products of nz single-spin operators, o', with nz+n even: Thus, in particular, Dq" =—0 so that the be-
havior of G qq for H =0 is determined by the second term in (3). All available exact information con-
firms (3). (For d=1, all amplitudes vanish for n~ 2. )

These results have been derived in detail for spin-& ferromagnetic Ising models on d-dimensional

hypercubic lattices with arbitrary short-range interactions J(r) in the (d —1)-dimensional "layers" and

with nearest-neighbor interactions P between spins in adjacent layers. ' Our calculations are based on

the transfer matrix (or, for a, general classical system, integral kernel) which adds a. layer to the sys-
tem. ' " Accordingly, we use the decomposition

R = r+Ze„Z=R, = R ~ e„ (4)

where e, is a unit vector perpendicular to the layers. The formula (3) is established for general H and
4' when

K = J/k, T «1,
although, with normal interactions, we expect it to remain valid for all fixed T & T, and sufficiently
small H. We have used a more or less straightforward perturbation procedure for the eigenvalues A. J

and eigenvectors
~ j) of the transfer matrix K based upon a decomposition of K corresponding to an un-

perturbed system" consisting of N uncoupled linear chains. The expansion parameter K couples the
chains together into layers of N spins.

If the eigenvalues are written A. , =exp( —aE, ) where a is the lattice spacing, we find that the F., can be
interpreted as the energy levels of a quantal many-body lattice system (or discrete field theory) of N

sites in d' =d —1 dimensions. The corresponding "particles" have infinitely repulsive hard cores which

gives the many-particle wave functions a. fermionlike character, even though the field operators 4'(r)

and 4' (r) (which effectively flip the eigenstates of the single chains) commute on different sites. The

va.cuum state ~0) of energy E,(H, T) determines the largest eigenva, lue A., and hence all the thermody-

namics. " '3 In zero field ~0) is even under the operator S, corresponding to total spin inversion.

Immediately above the vacuum lies a band of N single-particle states with excitation energy

(u, (q;H, T) =w(H, T)+e(H, T)q'+O(q'),

where the d'-dimensional wave vector q runs over the Brillouin zone of the layer lattice. When H =0
the corresponding eigenvectors ~1;q) are odd under S. The "energy gap" has the zero-field expansion

av(0, T) = ln cothK' —2d'K —2d'(d —2)(cosh2K')K2+ O(K')

for the nearest-neighbor model, while for general 0,

aw(H, T) =in(p, , /p )—2d'[Z„(Z —Z )+~Z, ~']K+0(K'),

where p, ,(H, K') are the larger and smaller eigenvalues for a single (uncoupled) linear chain and

Z„,Z =O(H)
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and

Z, , Z, =1+0(H )

are the corresponding single-spin matrix elements (+~o" +). The "stiffness" parameter is

e(H, T) =a~Z, ~'K+O(K') =aK+2d'aK'cosh2K'+O(K', H'). (10)

Above the single-particle band lies a two-particle band with 2N(N-1) states. The higher levels are
grouped into n-particle bands (n= 2, 3, ~ ~ ~ ) of („)states with excitation energy

(u„(q„~~ ~, q„)=Q(u, (q;)+O(K') =nv(P, T)+e(H, T)gq + ~ ~ ~ .

When H = 0 the eigenvectors ~n1qj) have parity (—)" under S.
The standard transfer-matrix expressions" "for G» in terms of the matrix elements and the pow-

ers (A. ,/X, ) ~ ~~' now reduces straightforwardly to a. sum over contributions from successive bands n~ 1,
namely,

G»'"'(R„R)= [(a/2m)"'/n'] fdq, ~ ~ f dq„M„'"'(r„(q))M~
t'" ~(r, + r; (q)) exp[ —

~
Z~ ~„(q, ~ ~ q„)],

where we use the decomposition (4), Z, = ~, and

M„~"~(r; (q]) = lim N "~'(O~A(r)~n{q]),

(12)

(13)

in which A(F) denotes the layer operator representing the original bulk operator A(R), while the dagger
in (12) implies the conjugate matrix element. It is clear from (11) and (12) that G»'"' is of order e "'
as ~Z~ and R- ~. This identifies w(H, T) as the universal inverse correlation length (for the z direc-
tion). The formulas (7) for tc may thus be checked against Onsager's exact result"" for d = 2 and the
exact expansion" for d = 3. The symmetry properties under spin inversion imply the II =0 "selection
rules" for M„~"~ (and, hence, D„~"~) stated after (3): Specifically we find M~~'~~Z, and Mq~»~Z„Z,
=O(H) [see (9)].

In order to evaluate the integrals in (12) asymptotically for large Z it is crucial to know the behavior
of the M "~ for small q: We find generally that M„~'~(q)—m„"'w0 for q —0. Hence as R —~ in the sim-
plest case r =0, Z =R, we have

. ~&I(R R) - yg &»gpss
~ ~(a/2p) e K& fdq e 's~'- -~»~ I »(a2/4„&)&'~2e -

/R «-~ ~~2 (14)

This confirms the OZ behavior of the first term in (3). For d = 2 and H = 0 the amplitude factor checks
against the exact Ising results to the appropriate order in k. When rc 0 the matrix element introduces
a factor e' ' ' which then yields the directional dependence of K in leading order for near-axis direc-
tions.

For the second band matrix elements we find

M'"(q„q,) = mQz [exp(iq, 5)-exp(iq 6)]

where 6 runs over the nearest-neighbor layer vectors, which for small q introduces a factor (q, -q2)'
into the integrals. This crucial feature arises directly from the hard-core or fermionlike character
of the particles interacting in the n=2 band. We hence have (as R=Ze, —~)

G„~'~(R„R)=-.'~ "~~ "~(a/2. )'"'. " I,(R),

I,(R) = fdic, fdq, (q, q)'e px[ —&R(q, '+q—,')] =m (d 1)e /R-, (1 6)

which completes the derivation of (3). Higher band contributions could likewise be computed but will
be asymptotically relevant only for those special operators and loci for which all the lower-order am-
plitudes vanish.

We note that without the factor (q, -q, )' in (16) we would obtain merely

G &2& (R) ~ [G ~»(R)]2-e 2K+/R& (17)

which is the normal prediction of the random phase and decoupling treatments. This approximation
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can, in turn, be re-expressed in Fourier space as

G'"(k)„p„=(2w)' fdqW(k, q)G )(q)G (k—q), (18)

if it is assumed that W(k, q) is constant or effectively so. Polyakov, '4 noticing that (18) has a, divergent
singularity at k =+2i~, performed a resummation of bubbles which leads essentially to the screened
singularity

G (k)p ~
const+ 1/G "(k)RpA.

On inverting this for d = 3 he obtained

G{'~(R) -e zK~/R'(InR)z (2o)

which disagrees with our result. For d =2, one obtains this way the correct Ising form, but we believe
the amplitudes will be incorrect. For d & 4 one finds G '"(k)RpA is finite at the nearest singularity and

no screening occurs, so Polyakov's argument would still yield the RPA form (17). On the other hand,
these results can be corrected (without need for further resummation) simply by taking

W(k, q) ~ (2k-q)'

which reflects the (q, —q, )' behavior of (15). This yields

G "'(R) ~ —[G'"]'V'inG'" ~(d —l)ve "/R'

(21)

(22)

which agrees with our result At p.resent, however, the replacement (21) has not been justified al-
though a sufficiently careful diagrammatic analysis might do so.

Finally we remark that if the form (16) holds for the zero-field energy-energy correlation function

up to and at the critical point where w- (T-T,)' it would imply a logarithmic specific-heat anomaly for
all d. However there are excellent reasons" for believing this is wrong; even in 6 =2 (where the spe-
cific heat is logarithmic) the amplitude for R —~ with T &T, does not match that for R —~ at T =T,.
More generally, however, near a critical point in a system such as gas/liquid, which has no exact
symmetry about the critical field f„the most appropriate continuation of the vapor-pressure curve

(T) to T &T, might be the "fluctuation" locus defined by D z{'~(f, T) —= 0. [In default of a. more basic
choice the critical isochore +(f, T) = 4', is often used. ] On this fluctuation locus the order and energy
fluctuations would be uncoupled in leading order as they clearly are in the symmetric systems on P

Only on this locus would the energy fluctuations diverge "weakly, " that is, less strongly than the

order fluctuations.
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It is shown that in a system of two counterstreaming plasmas, the growth rates of the
ordinary-mode electromagnetic instability can be several times the plasma frequency
even for nonrelativistic velocities. The electromagnetic instability therefore grows
faster than the coexisting electrostatic instabilities of the two-stream type, contrary to
the common belief that electromagnetic instabilities are only of interest if electrostatic
ones are absent.

It is often stated in the plasma physics literature that for nonrelativistic plasmas, electromagnetic
instabilities are much more slowly growing than the electrostatic ones and are therefore only of inter-
est if the latter are absent. ' ' In particular, for the well-known system of two plasmas counterstream-
ing along an external magnetic field, current theories show that the familiar electrostatic two-stream
instability, which has maximum growth rate of the order of the plasma frequency co~, is much more
important than the recently discussed ordinary-mode electromagnetic instability, which according to
cold-plasma theory has maximum growth rate of the order of (u/c)~~, where 2u is the relative stream-
ing velocity and c is the velocity of light. The purpose of this Letter is to show that when the Vlasov
equation is used to analyze the ordinary-mode electromagnetic instability in a system of two colliding
plasma streams, in each of which the electrons and ions are streaming at the same velocity, it yields
growth rates which can be several times the plasma frequency even for nonrelativistic velocities.
This work therefore offers an example that an electromagnetic instability can be the dominant insta-
bility even though there are electrostatic instabilities coexisting in the plasma.

The system under study consists of two colliding plasma streams of infinite extent, each with densi-
ty N/2. The electrons and ions of one plasma are streaming with velocity u along the direction of a
static and uniform magnetic field Bo, while those of the second plasma are streaming with equal veloc-
ity in the opposite direction. The equilibrium velocity distribution functions are of the form

N exp(-v~'/V~, ')
&3»y 2y

&g 11e

N exp(-v~'/V~ )
Oi 2 ~3»y 2y

ll j

(v ll Q) (V II +a)
exp —,+ exp

11 e II e

(0 p
-a) (5 ii+lc)exp —

2 + exp
Ilj Ili

where subscripts e and i denote electrons and ions, respectively; u is the directional velocity and V~
= (2T ~/m)', V~~= (2T ~,

/rn)' ' are thermal velocities perpendicular and parallel to Bo. (T~ and T
~~

are
nonisotropic temperatures. )

Colliding plasma streams described by Eq. (1) have been studied by Stringer with regard to electro-
static instabilities propagating along the direction of streaming, and by Parker' in the cold plasma
limit. As noted by Parker, ' plasmas of this sort are encountered in naturally occurring phenomena
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