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neck!? is not effective. The minimum may then
be attributed to a Korringa relation between the
g shift and the linewidth, and will occur where
Ag=0.

In summary, we have shown that suppression
of the Zeeman splitting by the spin-orbit interac-
tion produces an anisotropically enhanced local
susceptibility. This anisotropy is reflected in
the g value of the impurity resonance. In our
model it is the cancelation of the molecular
fields from the various bands in Sc rather than
the disappearance of the local-moment-conduc-
tion-electron coupling which allows the g shift
to pass through zero. Since the anisotropic or-
bital moment will remain, and since the cancela-
tion need not extend beyond the impurity cell,
the presence of an excess moment at all angles
does not seem to be in contradiction with our re-
sults.

We are indebted to F. Y. Fradin for bringing
this problem to our attention and for helpful dis-
cussions, and to the Argonne group for providing
samples. We acknowledge the assistance of Mr,
P, Madaffari in making these measurements.
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Electronic Heat Capacity and Susceptibility of Small Metal Particles™

R. Denton,{ B. Miihlschlegel,i and D. J. Scalapino
Department of Physics, University of California, Santa Bavbava, California 93106
(Received 1 February 1971)

Detailed calculations of the temperature dependence of the heat capacity and magnetic
spin susceptibility of small metal particles are presented. The results depend sensitive-
ly upon the symmetries or near symmetries of the dynamics, and exhibit the usual ther-
modynamic behavior only as the particle size becomes sufficiently large.

The electronic properties of an assembly of
small metal particles are determined by and re-
flect the distribution of the electronic energy lev-
els. This distribution may contain strong corre-
lations arising, for example, from the presence
of localized impurities or surface states. Alter-
natively, if such correlations are absent, one has
a more universal problem in which it becomes
reasonable to treat the level distribution statisti-
cally. The statistical characteristics of the ener-
gy level distribution are then determined by
(1) the particle size distribution, (2) a mean sin-
gle-electron-level spacing 6 for particles of a
particular size, and (3) the symmetry of the dy-

namics. The problem of a statistical level distri-
bution was first considered by Kubo! who assumed
a random distribution and calculated the electron-
ic heat capacity and spin susceptibility for the
limiting cases 6 «<kT and 6>>kT. Subsequently
Gor’kov and Eliashberg® showed that the correla-
tions between levels could lead to qualitatively
different results for these quantities at low tem-
peratures.

In this Letter we present detailed calculations
of the heat capacity and magnetic spin suscepti-
bility of metal particles for the whole tempera-
ture range and for different statistical assump-
tions. Our special aim is to encourage experi-
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mental comparison.® This would be very interest-
ing not solely in view of the unusual properties

of small particles, but at the same time such a
comparison could test the fundamental assump-
tions made for both the thermal ensemble and the
level distribution ensemble.

“Small” particle size implies that the typical
electronic level spacings are of order rather than
infinitesimal compared to other energies such as
thermal, 2T, Zeeman, guH, or electromagnetic,
hw. Here we have in mind particles with level
spacings of order 1 to 10 K. For these initial
calculations we use a noninteracting electron
scheme so that the total electronic energy levels
of a particle are obtained by adding up the excita-
tion energies of the single-electron states consis-
tent with the symmetry properties of the system.
First, of course, the Pauli principle must be
obeyed, and second, as emphasized by Kubo, the
large electrostatic energy enforces charge con-
servation. This latter near symmetry is particu-
larly important since it implies that the appropri-
ate partition function corresponding to the al-
lowed electronic energy levels is the canonical
and not the more familiar grand canonical one.
We will see that this leads to distinct differences
for small particles. Given these two basic sym-
metry requirements, the distribution of total
electronic levels is determined by the distribu-
tion of the single-electron energy levels €;. As
pointed out by Kubo, irregular variations among
the particles on an atomic scale lead to a single-
level distribution which has a mean level spacing
0 given by the inverse of the density of states for
one spin direction N(0) at the Fermi energy. For
particle size a of order 100 A this implies 6/
~1 K and b varies as a3, If the irregular poten-
tial merely had diagonal matrix elements among
the perfect small-particle crystal states, the re-
sulting electron-level distribution would be ran-
dom. Then the probability density P,(€) for find-
ing a level an energy € away from a given level
with » levels in between is just the Poisson dis-
tribution,

n _-€/é
P(e)= %(%) 66 (1)

which for »=0 reduces to an exponential nearest-
neighbor spacing. However, as discussed for nu-
clear level statistics by Wigner,* if there are off-
diagonal matrix elements of the irregular poten-
tial, the familiar energy-level repulsion effect
suppresses the probability of small level spac-
ings. For this reason, Wigner suggested that a
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more appropriate nearest-neighbor level distri-
bution was

P (€)= (me/28%) exp[—im(e/6)2]. (2)

Subsequently Dyson® and others®7 studied the
distributions of eigenvalues of ensembles of ran-
dom matrices constrained to satisfy various sym-
metries. For the small-particle problem, the
relevance of these ensembles depends upon the
strength of the spin-orbit coupling energy® n rel-
ative to the level spacing 6: (1) The orthogonal
ensemble is appropriate for /6 <«1; (2) the sym-
plectic ensemble applies for 1/6>1; and (3) the
unitary ensemble applies when pH > 6 and 1/6
>1.%®% For the orthogonal ensemble, it was
found® that the nearest-neighbor distribution is
closely approximated by the Wigner distribution
(2).

Before averaging over the level distribution one
must solve the fixed-level problem., The com-
bined restrictions of electron-number conserva-
tion and the Pauli principle complicate this seem-
ingly simple noninteracting-electron problem. If
however, there is no spin-orbit coupling and the
energy levels are equally spaced by 6, the pro-
jection of the canonical partition function Z from
the grand canonical one by means of a contour in-
tegration,

e“BEO(N)Z(MB):_l_fdAQO\y /3) (3)

2mi >\N+l ’

can be performed without the use of steepest de-
scents or other approximations. Here E (N) is
the ground-state energy with no magnetic field.

Integrating over the unit circle A=e'?, 6 func-

tions of the type 0,(3¢|i86/27) will appear in the

integrand and allow a direct evaluation of the ca-
nonical partition functions for even and odd total
electron number N:

Z eyen= 1142 3 expl-B5(n+ 1))

X cosh[(n+1)gBuH }2,2,

© (4)
Z qa=2 Z=>o exp[-B6n(n +1)]

x cosh[(n+ 3)gBuH 12,2,
with

Zy= f[lu—e‘“")" (5)

being the canonical partition function of spinless
fermions. Notice that the “Bose” partition func-
tion (5) reflects the fact that the number-conserv-
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FIG. 1. (a) Electronic heat capacity C and (b) spin
susceptibility x for a system with equal level spacing 6.
X is normalized to the Pauli susceptibility xp =2@Ggu)¥6.

ing particle-hole excitations can be described by
bosons as in Tomonaga’s model.® Furthermore,
introducing spin to this model and classifying the
excitations according to S, leads in a natural way
to the rotational-like partition functions. With
strong spin-orbit coupling, Eq. (4) applies if H is
set equal to zero. If, in addition, the magnetic
field is strong, Eq. (5) is appropriate with 6 re-
placed by 36.

Heat capacities computed from (4) are shown in
Fig. 1 together with the grand-canonical results
obtained 33 years ago by Frohlich, who was the
first to treat the problem of small metal parti-
cles. Note that the grand canonical ensemble
gives rise to a larger heat capacity because there
are more excitations allowed when the electron
number is not conserved. This is clearly evident
both at low temperatures and asymptotically
where the canonical heat capacity is 3% lower
than the grand-canonical result. Similarly, the
canonical and grand-canonical susceptibilities
differ; both are shown in the lower part of Fig. 1.

With this equal-level case in mind we turn next

Table I. Leading low-temperature behavior of the
electronic heat capacity and spin susceptibility for dif-
ferent ensembles, with even and odd electron number.

Ensemble Even Odd
C/k
Poisson 5.02T /6 3.298T /5
Orthogonal (3.02% 10) (T /6)* (1.78 X 10)(ET /6)?

Symplectic (8.18x 10%) (8T /6)° (1.64x 104 (BT /6)°
Unitary (5.88% 10%) (T /6)3

X
Poisson 3.04(3gp)%/6 19
Orthogonal 7.63(5g1) 2T /62 (egu)’/kT

to the problem of treating the single-level distri-
butions for an assembly of particles of equal
size. For kT <« 6 Kubo has calculated C and y in
the random (Poisson) case. In Table I, the lead-
ing low-temperature behavior of C and x for the
random case is listed along with our results for
the three correlated ensembles. Unfortunately
the leading behavior given in Table I is only good
for 27/650.1, and the calculation of higher order
terms is very tedious.! Therefore it is neces-
sary to find another approach.

When kT 26, the distribution averages rapidly
approach the canonical equal-level-spacing re-
sults shown in Fig. 1. Therefore, a useful inter-
polation scheme for the entire region is to expand
either the distributed-level C or ¥ about the equal-
level-spacing results. The first level strongly
influences the behavior of either C or x only for
kT «< 0, the second level becomes important as
kT /b6 increases, etc. Thus with the equal-level-
spacing results forming the zeroth-order approx-
imation, the contribution of the closest electronic
levels is removed and averaged over the appro-
priate level-spacing distribution to give the first-
order approximation.!! This procedure removes
the exponential decrease in C for kT/5<1 and
gives the leading low-temperature dependence
while still retaining the correct high-temperature
behavior. In the next approximation the terms
containing the next-closest contributing levels
are removed and appropriately averaged. Except
for the random case the distributions have their
spacings strongly peaked about 6, which guaran-
tees rapid convergence of our results as we go to
higher approximations.!?

In Fig. 2 we plot the simple average of the C ¢
and C°®"*" results obtained for the various level
distributions. As previously noted, the tempera-
ture range over which the simple power-law
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FIG. 2. (a) Electronic heat capacity after averaging
over the level distributions with (b) a blowup of the re-
gion kT /65 0.25.

forms are adequate is not 5/k but more nearly
0.16/k. Furthermore, for temperatures larger
than 6/k the heat capacities for the various distri-
butions converge to a linear behavior which is 3k
lower than the familiar grand-canonical result.
The blowup of the low-temperature region in Fig.
2 clearly shows the difference between the vari-
ous single-level distributions. The large proba-
bility of small level spacings in the Poisson dis-
tribution gives rise to a low-temperature linear
specific heat similar to that of the bulk metal.
The energy-level correlations implicit in the oth-
er distributions are responsible for the higher
power-law behavior at low temperatures, as first
noted by Gor’kov and Eliashberg.? The level-re-
pulsion effects are largest when spin angular mo-
mentum is not conserved and the Kramers de-
generacy is present. This is evident in compar-
ing the orthogonal and unitary results with those
obtained from the sympletic ensemble.

The results obtained for the spin susceptibility
using the random and the orthogonal level distri-
butions are shown in Fig. 3. Just as in the equal-
level-spacing case, the extra electron in the odd
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case gives rise to a Curie law behavior for 27T
<« 0, The difference between the distributions is
clearly evident in the even case, Here the finite
density of states at vanishing level spacing char-
acteristic of the random distribution gives a fi-
nite value for X..,., when 27 «6. However the
level-repulsion effect contained in the orthogonal
case leads to a spin susceptibility which is pro-
portional to kT /5 for kT « 6. Just as for super-
conductors we expect that spin-orbit coupling
will wash out this level-correlation effect when
1~98, so here we only consider the limiting case
of negligible spin-orbit coupling in which the or-
thogonal ensemble is appropriate. Both the even
and odd cases rapidly approach the Pauli expres-
sion as kT exceeds &.

In comparing the above results with experiment
the effects of the particle-size distribution must
be taken into account. For simplicity consider a
“square” particle-size distribution @ (a) centered
at ¢, with width Aa, The size enters only in de-
termining the average level spacing 6 which var-
ies as a”?; so, for example, the average heat
capacity is

(€)= [C(kT/b(a))® (a)da. (6)

Expanding this in powers of (Aa/a,) one finds that

(C)=C (kT /8,) + (8a/a P[5 (kT /5,)C" (kT /8,)

+3 (kT /0,)°C" (BT /5,)], M)
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FIG. 3. Spin susceptibility after averaging over the
level distributions.
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where 9§, is the level spacing for a particle of
size a, In both the low- and high-temperature
regions the particle-size distribution modifies
only the coefficient of the leading temperature-
dependent term and not the form of the power-law
dependence,
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In these calculations we apprommate the n-level
spacing distribution for Dyson’s three ensembles by
Wishart distributions (see Refs. 6 and 7). The Wigner
function is just the single-spacing Wishart distribution
corresponding to the orthogonal case.

We estimate that the first~order approximation is
good to within 10% for the Dyson ensembles and 20 %
for the Poisson case over the entire temperature range.
Asymptotically at both low and high temperatures the
error becomes completely negligible for our purposes
and is caused by the small deviation of the finite-level-
spacing Wishart distributions from the exact ones. See
for example Fig. 1.3 of Ref. 7.

Interpretation of Low-Energy Electron-Diffraction Spectra for a Free-Electron Metal in
Terms of Multiple Scattering Involving Strong Inelastic Damping*

S. Y. Tong and T. N. Rhodin
Department of Applied Physics, Cornell Univevsity, Ithaca, New Yovk 14850
(Received 18 January 1971)

The multiple~scattering approach with strong inelastic damping has been used to for-
mulate low-energy electron-diffraction intensity curves without the use of adjustable pa~
rameters. The results have been applied to the interpretation of spectra for the clean
(001) face of aluminum with good agreement. Inclusion of energy-dependent higher order
phase shifts obtained from a realistic potential, of energy-dependent strong inelastic
damping, and of temperature effects contributes significantly to the agreement of the cal-

culation with experiment.

The elastic and inelastic scattering of low-en-
ergy electrons provides a powerful approach to
the study of the atomic structure and electron
properties of crystal surfaces. Encouraging pro-
gress has been made recently in the development
of theoretical approaches to the problem.!"?
Recognition of the importance of strong inelastic
damping contributed significantly to this develop-
ment.'"® Duke and Tucker® were the first to pro-
vide effectively for this contribution in a phe-
nomenological way in terms of the multiple-scat-
tering approach. Using an s-wave model, they
expressed the scattering and damping factors in
terms of adjustable parameters, and they were
able to interpret important qualitative features

of the intensity profiles observed in low-energy
electron diffraction (LEED).?

In this Letter, we wish to report on the first
complete calculation of LEED spectra for a free
electron metal in terms of the multiple-scatter-
ing approach involving strong inelastic damping
with no adjustable parameters. The significance
of this work is that within the constraints inher-
ent to the approach it produces spectral curves
in meaningful agreement with specific details of
experimental results obtained by Jona!® for a
relatively simple metal, aluminum, when we
compare to the detailed conditions of his mea-
surement. Specifically, resonance effects as-
sociated with strong intraplanar scattering were
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