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Anisotropic Behavior of Dilute Scandium-Gadolinium Alloys*
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The g value for electron spin resonance of Gd impurities in Sc is found to be anistrop-
ic. The anisotropy is shown to result from spin-orbit coupling in the impurity cell.

Gadolinium impurities have long been known'

to behave like S-state ions in solution. It is
somewhat surprising, therefore, that the effec-
tive moment of Gd impurities in Sc is strongly
anisotropic' and considerably larger' than the
moment in metallic Gd. Fradin et al. ' attributed
the large moment to induced spin polarization on

nearest-neighbor sites, and the anisotropy, at
least in part, to an induced orbital moment in the
impurity cell. 4 In order to study this system
further, we have made electron-spin-resonance
measurements on portions of the crystals used
in the susceptibility experiments. Resonance
signals were observed in samples with Gd con-
centrations in the range 500-10000 ppm. In the
more concentrated samples a second, narrower
line was observed which did not exhibit the be-
havior described below. We believe that this line
is due to Gd clusters,

Resonance data were obtained by standard
methods using an X-band spectrometer. The
spectra were fitted to Dyson-type lines, using
Lorentzian and Gaussian shapes, by means of a
least squares fitting procedure. Somewhat better
fits resulted with Gaussian shapes, and these are
reported here. The g value is independent of the
shape used.

The g value for the 500-ppm sample is shown

in Fig. 1(a) as a function of the angle between the
dc field and the c axis. The samples were pol-
ished to a cylindrical shape in order to avoid de-
magnetizing effects. Further, the impurity mag-
netization is negligibly small at this concentra-
tion. The g value along the c axis (8=0) is con-
siderably larger than in the a-axis direction and

passes through g= 2.00 at 0 = 60'. In the simple
theory, ' this requires that the s-f exchange ener-

gy vanish, but since the moment per impurity is
larger than the ionic value at all angles, ' some
coupling must remain. The deviations from
cos'0 behavior are larger than experimental er-
ror; a better fit is obtained when g is plotted
against cos48.

Shown in Fig. 1(b) is the anisotropy of the line-
width for the same sample, calculated for Gauss-
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FIG. 1. (a) The g value of the spin resonance of Gd

impurities in Sc. The data indicated by circles were
taken at 3.0 K, and by squares at 4.2 K. Both sets are
for a Gd concentration of 500 ppm. The angle is mea-
sured from the hexagonal c axis. (b) Linewidth at 3.0
K for the 500-ppm aQoy. The widths are calculated for
Gaussian lines.

ian lines. The errors in the linewidth are much
larger than in the g value, but it seems clear
that there is a minimum near the angle for which
g= 2. Since both the linewidth and g shift in met-
als are dominated by the conduction electrons,
we conclude that the observed behavior reflects
an anisotropy in the impurity-conduction-elec-
tron coupling rather than crystal-field splitting
of the impurity f levels. The conjecture is sup-
ported by the behavior of Gd ions in a variety of
other hosts. "

Local-moment-conduction-electron coupling
has been shown' to result from the interplay of
two mechanisms: the ferromagnetic exchange in-
teraction and the antiferromagnetie mixing ex-
change. The mixing interaction can couple the
local moment only to conduction states having
the same parity as the impurity levels. In the
case of Gd, this is further restricted to l = 3
partial waves of the conduction-electron wave
function. ' With Sc as the host metal, the situa-
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t1on 18 coIQplxcRted still further by crystal-field
splitti. ng of the d bands and s-d hybridization.
There are four bands at the Fermi surface of
Sc, which form interlocking hole and electron
surfaces. ' Portions of the hole surface ax'e doub-
ly degenerate. The anisotropy of the nuclear re-
laxation' in Sc has shown that 20% of the density
of states at E F is due to tight-binding d-wave
functions of E" symmetry, and the remRinder to
s-d states of A.,' symmetry. It is customary,
nonetheless, to introduce an effective molecular-
fieM coupling between the impurity moment and
the magnetizati. on of the host conduction elec-
trons. This seriously oversimplifies the actual
situation and masks the effects of local varia-
tions i.n the conduction-electron susceptibility.

In order to improve the situation somewhat, we
make the assumption that the electrons in the hy-
bridized s-d orbitals are coupled to the impurity
by a net antiferromagnetic exchange interaction
-J„while those in the degenerate d levels couple
with a net ferromagnetic exchange J,. This is a
reRSODRble SepRx'Rtlon since the mixlDg exchRDge
is inoperative between d electrons and f levels.

We may write, then,

&g= (-~xXx+ ~2X2) ~2 ps ~

where X, and X2 are the contributions to the elec-
tronic susceptibility per atom from the s-d and
the d orbitals, respectively. %6 anticipate that
local spin-ox'b1t splitting of the d levels 18 the
source of the anisotropy in 4g, modifying the
locally enhanced susceptibility y,.

%6 now consider a simplified model in which
a twofold degenerate band contains one electron
per atom. We xestri. ct ourselves to the case of
Sc, for which this band is constructed from tight-
bindlng wave fuDctloDS of E' syIQIQetly, which
transform as linear combinations of I',"(8,y)
under the covering operations of the group D».
The z axis coincides with the hexagonal c axis.
Since Gd and Sc are isoelectronic, we assume
that the major contribution to the impurity po-
tential ls due to sp1n-ox'bit coupling» wh1ch 1s
X=—1000 cm ' for Gd as compared with A. &100
cm ' for Sc. With the magnetic field along the
c axis the impurity potential, ignoring the hy-
bridized band, is"

X,=sgn„.+-,'xQ(n, .-n, .)+2p, a(n, -n„)+-,'(U-J) Q n .n,„,.+ U P n, n, ,m& m&m 0 mm
(2)

where n, =c„, c„„andc, creates a d electron in the mth orbital on the impurity. These orbitals
are eigenstates of X, o =-A.l ~ s, with m = 1 the ground state, and m = 2 the excited state. These corre-
spond to j, =+~ and +&, respectively. Fox' m = I states, the orbital moment cancels the spin moment
(l, +2s, =0) and there is no splitting in a field. For m = 2 states, the orbital moment adds to the spin
moment giving twice the usual splitting.

When H ls along the Q axis, the Zeeman term in (2) ls

uYg =lpBPi[c2 egg-egg c2 +cg c2p-c2+ cg j.
The spin-orbit Rnd Zeeman terms are diagonalized by the substitution

b„,~=[(-,'X+A)c, t+ip, ac, t]/(2A'+XA)"', mom,

where A =(-,'A, '+ p, 8'H')'~'. The interaction Hamiltonian then becomes

whex e n, '= b, ~b, . Because the new states are no longer true one-electx on orbitals, the Coulomb
Rnd exchange terIQS ax'6 only Rpp1oxlnlRte. So long Rs the admixture 18 sIQRll, this should Dot be R
serious errox', but our results are not valid in the limit of small spin-orbit coupling.

In the Hartree-Pock approximation we obtain one-electron energies from (2) and (5) which are
E,'=E+(-I) x+2(m-I) p, ,a+(p-J) Q n„+Ugn ,„,

m + m m

Z„,'=E+(-I) A+(fJ-t) g n, '+Vpn „'
mtwm m'

for Q parallel to the e and a axis, respectively. The bax denotes the average occupancy of a level.
The absence of a splitting of the oxbitals when the magnetic field is along the a axis reflects the aniso-
tropic g factors of the spin-orbit-split levels.
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We now assume the density of states for the d band to be a Lorentzian of the form" p, (e) = go/v{gg'

+e'). In the pure metal each sub-band contains —,
' electron which implies that E F =-w and that p, (E;)

= (2mur) ' in each sub-band. The occupancy of the impurity levels is well known ' to be n, = n
' cot '(1

+E,/se) for these conditions. Assuming that the impurity potential E adjusts to localize one screen-
ing electron, we expand about the average occupancy and solve the resultant set of linear equations to
find that

( 1)
&p. (E )/2 2( -1)p &p, (E )

I-(~-8p, (E F) 1-(L + J)p„(E,)

for 8 along the c axis, and

= 4q, 'p„{E,)a/[1-(V gp, (E,) -]. (10)

The anisotropy in the moment arises from the
effect of the exchange interaction on the impurity
orbitals: It opposes the Coulomb interaction in
the splitting of like-spin states under the spin-
orbit interaction, but assists in the splitting of
opposite-spin states. This difference in enhance-
ment is responsible for the quenching of the or-
bital moment in the Anderson model, for which
more detailed calculations have been made. "

%e have shown that the enhanced conduction-

for H parallel to the a axis. The splittings are
sketched in Fig. 2. In the first case, the mo-
ment in the impurity cell due to the spin is

m, =P,sg (rs,-n„)
= 4 p.,'p„(E,)a/[1-(tr+ J)p„(Ep) ].

In the second case the moment is due to the ad-
mixture of up- and down-spin states. An elec-
tron in the mth orbital contributes {-I)"+'p, s &/
A to the magnetic moment in the impurity cell,
so that

m, =( p, ,'H/A)g, (-1)""n,'

electron susceptibility becomes anisotropic un-
der the influence of spin-orbit coupling It will
therefore, give rise to an anisotropic Knight
shift of the Gd local-moment resonance through
Etl. (1). To compare the anisotropy with experi-
ment we make the simplifying assumptions that

that the locally enhanced susceptibility
given by (9) is the same as for a Sc site, and that
the d band contributes a fraction f= 0.2 to the
total susceptibility per atom. From (1) we find
that

&g. = [-(I-f)~,+fJ.]Xs,/2~a'&,

&r. = [{1-f)~.+-f~./&]Xs, /2~ '&,

where gs, = 3.7&10 ' emu/mole and the enhance-
ment factor / = 3.5.' Solving for J', and &, from
the observed g values we find J,=0.0I eV and

J, =—0.1 eV. This value for J, agrees with the
direct exchange energy calculated for Gd impuri-
ties using orthogonalized plane wave functions. e

The small value for J, is probably due to a near
cancelation of mixing- and direct-exchange in-
teractions in the s-d band. If U-J4 0, the anisot-
ropy is reduced and f tends toward unity.

The H.newidth data is not sufficiently accurate
to obtain the temperature-dependent part. The
width of the resonance indicates that the bottle-

H" c H"a

FIG. 2. Occupations of the four E sub-bands in the impurity cell as a function of magnetic field. The splittings
are exaggerated. The right-hand curve corresponds to m =1. The enhanced splitting of the j, = +2 states gives rise
to the large spin moment when Hii c.
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neck" is not effective. The minimum may then
be attributed to a Korringa relation between the

g shift and the linewidth, and will occur where
Ag= 0.

In summary, we have shown that suppression
of the Zeeman splitting by the spin-orbit intera, c-
tion produces an anisotropically enhanced local
susceptibility. This anisotropy is reflected in
the g value of the impurity resonance. In our
model it is the cancelation of the molecular
fields from the various bands in Sc rather than
the disappearance of the local-moment-conduc-
tion-electron coupling which allows the g shift
to pass through zero. Since the anisotropic or-
bital moment will remain, and since the cancela-
tion need not extend beyond the impurity cell,
the presence of an excess moment at all angles
does not seem to be in contradiction with our re-
sults.

We are indebted to F. Y. Fradin for bringing
this problem to our a,ttention and for helpful dis-
cussions, and to the Argonne group for providing
samples. We acknowledge the assistance of Mr.
P. Madaffari in making these measurements.
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Electronic Heat Capacity and Susceptibility of Small Metal Particles*
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Detailed calculations of the temperature dependence of the heat capacity and magnetic
spin susceptibility of small metal particles are presented. The results depend sensitive-
ly upon the symmetries or near symmetries of the dynamics, and exhibit the usual ther-
modynamic behavior only as the particle size becomes sufficiently large.

The electronic properties of an assembly of
small metal particles are determined by and re-
flect the distribution of the electronic energy lev-
els. This distribution may contain strong corre-
lations arising, for example, from the presence
of localized impurities or surface states. Alter-
natively, if such correlations are absent, one has
a more universal problem in which it becomes
reasonable to treat the level distribution statisti-
cally. The statistical characteristics of the ener-
gy level distribution are then determined by
(1) the particle size distribution, (2) a mean sin-
gle-electron-level spacing 5 for particles of a
particular size, and (3) the symmetry of the dy-

namics. The problem of a statistical level distri-
bution was first considered by Kubo' who assumed
a random distribution and calculated the electron-
ic heat capacity and spin susceptibility for the
limiting cases 6 «AT and 6»AT. Subsequently
Gor'kov and Eliashberg' showed that the correla-
tions between levels could lead to qualitatively
different results for these quantities at low tem-
peratures.

In this Letter we present detailed calculations
of the heat capacity and magnetic spin suscepti-
bility of metal particles for the whole tempera-
ture range and for different statistical assump-
tions. Our special aim is to encourage experi-
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