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4(a) and 4(b), and the agreement with the data
points demonstrates that the coupling takes place
over the volume excited by the resonant TM
mode.
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A spin wave CRlculRtion of the thermodynamic properties of RntiferroHlagnetlcaOy or
dered solid 38e in a magnetic field has been caxried out. A cooling effect vrith isentropic
magnetization is predicted for fields near the (T = 0) critical value II, =2zJI/y„& (=—74 kG) .
In a second calculation a field H-II, is found to displace the melting curve P (T) to sig-
nificantly lovler px'essul es; it follows that R two-phRse mlxtUre of He CRn be isentrop-
ically solidified (and thus cooled) by application of a fieM from starting temperaturesI'-5 mdeg K as a useful adjunct to the Pomeranchuk cooling method.

Some time ago experiments were reported in
which the Pomeranchuk' or adiabatic-compres-
sion (AC) cooling effect was employed to bring
speclIQens of solid He down to the IQillidegl ee
tempexature region. '3 It is of interest to ex-
amine the effect of Rn Rpplied magnetic field on
this cooling pxocess. This was discussed by
Goldstein in a recent I,etter on the basis of a
IQoleculax'-field cRlculRtlon of what isq 1n effect~
an Ising model'; it was concluded that an applied
field of correct magnitude would, in principle,
disorder the 'He nuclei in such a way as to re-
duce the theoretical lower limit of AC cooling to
O'K. %'e have re-examined this question on the
realistic assmuption of isotxopic exchange cou-
pling' in both the molecular-field Rnd spin-wave
Rppx'oxlIQRtlons. Oux' flndlngs Rl e Rs follow8:
(a) There is now no disordering effect with field
»n the molecular-field approximation' such as
that reported in Ref. 4„ i.e., (88j8II) ~r ~0 where
8 is the entropy. (b) However, viewed in terms
of the spin-wave theory of antiferromagnetically
ordered solid 'He, it. appears that a disordering

effect does exist fox' applied fields H ln the vlcln-
ity of the (T=o) critical value II, =2zIJjy„h,
where z is the coordination number, I the spin
quantum number, y„ the gyromagnetic ratio, and
J the isotropic exchange coupling, where the cou-
pling of nearest-neighbor nuclei is taken to be
JI,. I, In pax ticular at P=IJ, the intersection
temperature of the liquid- and solid-'He entropy
curves, which constitutes the theoretical lower
limit of AC cooling, is found to be reduced by
two orders of magnitude from its value at H=O.
(c) In a second calculation we have examined the
effect of a magnetic field H- JJ, on the melting
curve P(T). The field is found to displace P(T)
to lower pressuxes, suggesting that a two-phase
mixture can be solidified from a starting temper-
ature T~ 5 mdeg K by applying a field at constant
pr essure. Thi.s may lead to a substantial reduc-
tion of the frictional losses which occur at the
low-temperature end of AC cooling.

In examining spin-wave effects in bcc solid SHe
we assume isotropic, nearest-neighbor (only) ex-
change coupling. In zero applied field the anti-
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ferromagnetic spin-wave dispersion has the well-
known form e„~k for ka «1 (a =bcc lattice con-
stant), yielding a leading term in the entropy'
S,„„./R=—0.0548(ks T/J). 'This and subsequent
spin-wave results are valid for kBT «zJI. The
behavior of spin waves in the spin-flop configura-
tion is discussed by Keffer. ' As the field H is in-
creased, one branch of spin waves is lost to
thermal excitation for y„@H&k~T. When H
reaches the critical value H, (T) for the spin-
flop to paramagnetic-phase transition, "the spin-
wave dispersion becomes eharacteristica11y fer-
romagnetic with e~ ~k' for ka «1. The corre-
sponding entropy expansion gives Sf„„/R
= 0.1065(kBT/J)'", a much more rapidly increas-
ing function of T than S,„„for kBT/J«1. C'on-

sequently, the condition Sf„„&S,„„- holds over
most of the ordered region.

In terms of these results we envision t.he fol-
lowing behavior of the temperature T(H) s on isen-
tropic magnetization beginning at some initial
temperature T, As H is increased from zero,
T first increases by a factor 23" owing to the
loss of one branch of excitations. As H- H„
"magnetization cooling" occurs" with a temper-
ature minimum T& corresponding to Sq,„„(Tf)
= S,„„(T;). This condition yields

T~
= 0.642T,. (kBT,./J),

where it is seen that the cooling effect increases
on lowering T, . Here it is worth noting that the
specific heat, which is of considerable experi-
mental importance, decreases by just a factor
of 2 on reaching T& [Eq. (1)] in contrast to the
expected T' variation in zero field. As H is in-
creased beyond H, , a gap b, e = y„h(H-H, ) de-
velops in the magnon energy, giving rise to a
rapid increase in T again.

The temperature minimum at H= H, is quite
sharp; and, moreover, the slope (BT/sH) ls is
discontinuous at H= H„giving the minimum a
cusplike quality. The latter point can be easily
demonstrated using the magnetocaloric equation
(ST/SH) ~, =-(T/Cs) [BM/BT]„. Evaluation of
[BM/BT]„ for H&H, and H&H, in terms of spin-
wave theory shows it to be &0 and &0, respective-
ly, as H -H, from either side. The width 4H
of the temperature minimum (on the low-field
side) can be estimated to be &H-0. 05H, (ksTf/
J)' '. Thus &H is on the order of 1% of H, and
varies quite slowly with Tf.

The spin-wave results are illustrated with
reference to the AC cooling technique in the en-
tropy-versus-temperature diagram of Fig. 1.
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FIG. 1. Log-log plot of entropy versus temperature
for liquid and solid He. S~;q is taken from Ref. 13.
For solid He, S~ (H=O} and 8fp, po (H=H, ) from the
text are plotted at T- TN/2. For T- TN the series
expansion results from Ref. 14 are plotted for H=O,
the molecular-field theory results for H=H .

The solid-BHe entropy expressions S,„„(T)and.
S„„,(T) given above have been plotted for T
~ &T„on a log-log scale, assuming the melting-
curve exchange value J/ks = 1.44 mdeg K given

by Panczyk and Adams. ' The corresponding
critical field value is H, = 74.0 kG. Although the
entropy curves in Fig. 1 are incomplete, it is
evident that the cooling effect with field [Eq. (1)]
is only appreciable below S/8 ln2- 0.1. Also
plotted is Sllq, /A ZT, where" y=—4. 6 K ' is field
independent for a Fermi liquid. For T & T»,
curves of solid-'He entropy are plotted for H=0
using the high-temperature series-expansion re-
sults of Baker et al. "and for H=H, using molec-
ular-field theory. The estimated Weel point is"
TN=1. 38J'/kB —=2.0 mdeg K. The intersection
point of S„.~(T) and S,„„(T)(i.e., for H=0) is
seen in Fig. 1 to occur at T=—0.5 mdeg K, giving
the theoretical lower limit of AC cooling in zero
field. The corresponding intersection of S q„„(T)
with S„~(T) is about two orders of magnitude low-
er at T—= 5.6 p, deg K.

Turning our attention to the 'He-melting curve
P„(T), we extrapolate the experimental data of
Scribner, Panezyk, and Adams" to lower tem-
peratures by integrating the Clausius-Clapeyron
equation dP„/d T = [S„I(H, T)-SI;, (T)]—/b V . For

692
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FIG. 2. Extrapolation of the melting-curve results
of Scribner, Panczyk, and Adams (Ref. 15) to lower
temperatures, arbitrarily fitting the H= 0 curve to
their 20-mdeg-K data point (their 17-mdeg-K point is
also shown). The dashed curve represents the hypo-
thetical condition that the spins remain totally disor-
dered. The H=O and H=H, values are calculated rela-
tive to the dashed curve according to Eq. (2) of the text.

the volume change on melting we take" ~V
= 1.272 cm'/mole, neglecting its temperature de-
pendence. The calculated curves are shown in
Fig. 2 and are obtained as follows. The upper-
most (dashed) curve corresponds to totally dis-
ordered nuclear spins and is obtained taking
S„,(T) =R ln2 and S„.„(T)=RyT, with y given
above. The H =0 and II =H, curves are calcu-
lated with the equation

Ap„(T) =—-A V 'f [Rln2-S„I (H, T)dT, (2)

giving the pressure difference AP„(T) relative
to the dashed curve. For H=0, S„,(0, T) is ob-
tained from the high-temperature series expan-
sion for the specific heat of an isotropic, spin-&
antiferromagnet given by Baker et al." For II
=H„S„,(H, , T) is calculated from molecular-
field theory. ' Such a theory is known to be very
approximate; however, we note that for T=O the
integral in Eq. (2) is simply the free energy of

the ground state and is given exactly by molecu-
lar-field theory: F(0) = -N IySHI- ,'z J-is]. This
formula is correct for II~ H, . The correspond-
ing T=0 pressure decrease AP„(0) is 0.279 atm

C

and should be quite reliable. In addition, the
quantity hP„(&) has been calculated with the
Green-function random-phase-approximation
method, where the magnon dispersion is renor-
malized according to the magnetization. The lat-
ter results agree with the molecular-field curve
of Fig. 2 for T- 0 and T» J/k s, and lie below the'

curve at intermediate temperatures by an amount
less than 0.007 atm. Thus the agreement is ex-
cellent.

Figure 2 reveals an interesting possibility re-
garding the cooling of liquid-solid mixtures of
'He, namely that the last few millidegrees of
cooling, which are difficult to carry out isen-
tropically by compression, can be accomplished
by aPPlying a magnetic field. Starting at point
A with an equilibrium two-phase mixture in zero
field, a field applied at constant pressure will
cool the mixture until the liquid is exhausted,
after which the discussion of T(H)s given above
for the solid will apply. Such a scheme, when
combined with the critical-field effect described
above, may provide a feasible means of bringing
'He into the submillidegree temperature region.
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Strong current&riven tux'bUlence is observed in high p colllslonless shock %'aves under
'E, -1'; and e„«v~ conditions. The level and the frequency and vrave-nuInber spectra of
this turbulence are Ineasured by scattering light from the shock. The turbulence is pxob-
ably due to an electron-cyclotron drift instability.

Previous experiments" on collisionless shock
waves have established that the electron heating
observed in low-Mach-number shocks (M&M„;„
resistive shocks) implies a resistivity in the
shock front which is about two orders of magni-
tude largex' than the "classical" value based on
binary Coulomb collisions. It is generally pre-
sumed that this "anomalous" resistivity is due
to scattering of the electrons by suprathermal
electrostatic fluctuations arising from some
microinstability.

This I etter deals with time-resolved measure-
ments of the level' and spectrum of suprather-
mal fluctuations in a collisionless shock wave.
The quasistationary shock, which propagates
perpendicular to a magnetic field 8, with Mach
number M = 2.5, is produced by radial compres-
sion of an initial deuterium plasma by a fast 9

pinch. ' The initial plasma conditions' (n„=4
& 10" cm ', T„=4 eV, T, , = I«V, ' &I = 700 6)
differ from othex' shock experiments insofax' as
the plasma p is high (pI -0.7) and T„/T, , &1. As
a, consequence of the Iatter the electron tempex'a-
ture T, does not substantially exceed the ion
temperatux'e T; during the shock-heating process
(T„=110 eV from 90 laser scattering, T,,—70
eV from Rankine-Hugoniot relations). This
makes it unlikely that the microturbulence caus-

ing the observed collisionless electxon heating'
results from an ion acoustic instability as pxo-
posed for other experiments" in which T,/T, »1.

I.aser scattering experiments. In the laser—
scattering experiments, described in detaiL else-
where, ~'9 the light pulse of a 500-M%' ruby laser
is timed to hit the shock wave while it traverses
the beam. The pulse width (12 nsec) and diver-
gence of the laser beam make it possible to x'e-

solve the structure of the shock wave.
The light scattered in the forward direction

9 = 2.5'-6' is detected by a photomultiplier, either
directly or after spectral resolution. The geome-
try of incident and scattered-light paths is such
that the scattering plasma waves have a wave
vector k-with lkl of order I/O (Ix- I/[klool),
D being the Debye length —collinear with the azi-
xnuthal current in the shock front. Simultaneous-
ly with the forward-scattering measurements,
the density and electron tempexature in the shock
are determined by 90 scattering (Ix «I) using
a multichannel detector arrangement.

Measured level of fluctuations. —Figure 1 shows
the measured total level of density fluctuati. ons
n,s as a function of time for a, scattering angle
8 = 2.5'+0. 5 (Ikl= 4 &10' cm '). Time is mea-
sured from the beginning of the 0-pinch discharge„
The experimental points denoted by open cir-


