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The amplitude for the one-photon transition 2 S&
—1~80 in helium is shown, from quan-

tum electrodynamics, to be computable in terms of the nonrelativistic wave functions.
Numerical evaluation gives a decay rate of 1.2&& 10 sec

One-photon radiative transitions of He and Be-
like ions of the type n'S, -1'So have attracted con-
siderable interest recently, from a variety of
points of view: astrophysics, ' solar physics, '
and laboratory experiments. ' The theory of this
decay has, however, been a subject of some con-
troversy; the problem is delicate because the de-
cay amplitude M is of order n, so that its com-
putation requires a treatment of the atom which
takes into account relativistic effects to rather
high accuracy. It is tempting to use as the start-
ing point for such a calculation the Dirac-Breit
Hamiltonian

HD, =(n, p, +P,m)+(n, p, +P,m)

where V,. = Ze'/r-, , V» =e'/r», and

I3 = (—e /2r„)(n, n, + n, r. „n, r„)
is the Breit operator; however, as is well known,
use of B beyond first-order perturbation theory
leads to quantitatively incorrect results for fine-
structure splitting. 4 Although it is possible to
base a consistent treatment of this problem on
the four-dimensional Bethe-Salpeter equation,
we have found a more transparent and simpler
approach, which starts directly with the external-
field Hamiltonian H of quantum electrodynamics.
Our method is based on the observation that in
atoms, those effects of the Coulomb interactions
which involve the virtual creation of electron-
positron pairs lead to level shifts which are of
order n4m or Z20.'4m and hence may ultimately
be treated as perturbations, together with the in-
teraction with transverse photons. We show that,
to the required accuracy, M may be computed a,s
the matrix element of simple operators, taken
between eigenstates p of the completely nonrela-

tivistic two-electron-atom Hamiltonian H„, :

H„„p =(p, '/2m+p, '/2m+ V, +V, +V»)p

H, g= (E, +E, +A„-VA„)/=ED. (2)

Here E, =E(p,.) -=(p,.2+m2)'~2 and A, + is the pro-
duct of positive-energy projection operators: A„
=A,(p, )A,(p, ) with A, (p) =[E(p)+(n p+Pm)]/2E(p).

(b)

FIG. 1. Time-ordered Feynman-like diagrams con-
tributing to ~. The wavy and solid vertical lines repre-
sent photons and electrons, respectively; the solid
horizontal lines indicate integrations over initial and
final atomic-wave functions. (a) ~~(, the lowest-or-
der term; (b) Mb, the leading no-pair, transverse-(1)

photon corrections to M,

We define H,„"~ and Hc".P as the no-pair parts
of the interaction H, „with the external field and
the Coulomb interaction Hc obtained by dropping
all terms corresponding to virtual pair creation
or annihilation, and write H =H" ~ +H', with H" P'

=Hi„,+H,„""'+Hc"'" and H'=Hr+(H, „-H,„" &)
+(Hc-Hc" "), where Hr is the interaction with
the transverse radiation field. H"'~' has normal-
izable eigenstates 4 in the two-electron, no-pho-
ton sector of Fock space; with

q(p„p, ) = Q u (p, )u (p,)(p„v„p„o,~%),
j.' 2

where the u's are positive-energy Dirac spinors,
the eigenvalue problem reduces, with V=U, +V2
+V 2, to
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FIG. 2. (a} M~~2~, one-pair, external Coulomb-field

corrections; (b) Mb& &, one-pair, electron Coulomb-
field corrections; (c}Mc~~~, leading one-pair, trans-
verse photon corrections.

4)
(b)

FIG. B. (a}~~~ ~, nonleading transverse photon cor-
rections; (b}Ib+, radiative corrections to M ~{~~.

The matrix element for a transition from a state
~ (,) to a state ( (&, k, e) containing a. photon of mo-

mentum k and polarization e, induced by H, is given by

3R=Q„.k, ~~a +II'8~'+II 9~ g~+. . .~q, )

with P, =(E-H".& +is) ', E =E, =E&+.k. The various contributions to% are conveniently symbolized
by time-ordered Feynn1Rn-like diagrams shown in Figs. 1-3~ more con1pllcRted dlRgl Rms, lnvolvlng
creation of more than one transverse photon, may be neglected. We write K=e(20) ' 'M and M =M "
+M~'~+M~'~+ ~ ~ ~ . Corresponding to Fig. 1(a), we have

M,"'=&(, fn, &q, ~,.:~n, IQ;)=2@,lo', ~R, I(;),
with q, =exp(-sk, r, ) in coordinate space. From Fig. 1(b) we get

Mb~'~ =2&(~~ n, ~ Fg, G,A „B+BA+,G,n, ~ eq, ~ g,.),

(3a)

(3b}

where G, =(E-H, +ze) and B is the Breit operator. To arrive at 3(b) we have neglected recoil in the
two-electron, one-virtual-photon intermediate state, i.e., neglected E(p, )+E(p,-k')-2m relative to
the energy k' of the photon; since the major contributions come from 0'-o.nz, this only introduces an
error of relative order o.'. From Figs. 2(a) and 2(b) we get, respectively,

M,"'=2&(„ln, ~q, A (p, )(V,/2~)+(V, /2~)A (P,)n, &, &14,),

Mb~ ~=2&(~~a e'II, A (p )(V„/2m)+(V„/2m)A (p )rj,n, e~ q, );

(4a)

(4b)

here we have neglected the photon and electron kinetic energies relative to 2m in the energy denomina-

tors, which only introduces an error of order n . With similar approximations we get, from Fig. 2(c),
corxect to relative order 0',

M, ~2& = 2&qy(Z, Kr/, A (p, ){B/2m)+(B/2m)A (p, )r/, n, ~I q, ). (4c)

The terms arising from Fig. 3(a) are all down by a factor of n from those arising from Fig. 2(c),
since there are paix s present in each intermediate state and there is no semismall energy denomina-
tor proportional to 0'-em. Thus, M,~'~ =O(n)M, ~" may be neglected. Finally, close examination of
the radiative corrections exhibited in Fig. 3(b), the off-mass-shell contributions of which on first in-

spection threaten to be large, i.e., of order o. , shows that cancelations occur which lead to the result
Mb~'~ =6(o.'Inn), which we also neglect.

From 3(a) and 3(b) we see that Mb~" is essentially a wave-function correction to M,~'~; it is conve-
nient to treat terms together, by defining a new wave function 4, satisfying

[E,+E2 + A „(V+B)A„]4 =E4

so that I =(I+G,A++)g. In terms of 4 we may write, to the requisite accuracy,

M"'-=M "'+M "=2&C Io' .~g ~~')

Since A,(P,.)l =4, we have

C =(I+a, g,)(1+n, -k,)e",
where 4"=-,'(I + p, )(l+ p2)4 are the "large components" of 4 and g,. =p,. /(E, +m); the equat. ion satisfied
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by 4" is (H„, +H&, ')C "=E4'", where H&, ' is an operator whose diagonal matrix elements, taken
between eigenstates of H„, [Etl. (1)], correctly reproduce the fine-structure level shifts, to leading
order o'4m. It is both fortunate and remarkable that (6) may be evaluated, to sufficient accuracy, com-
pletely in terms of the extreme nonrelativistic approximation q = y(r„r2)y to 4", with pa solution of
(1) and g a spin eigenfunction. To see this we note first that, since n is a J'=1 negative-parity opera-
tor and we are interested in a transition from a 1' to 0' state, in the spherical-harmonic expansion of

ri, =Q,(2l+1)(-i)'j,(kr, )P, (k r, ),

only the l =1 term contributes and we may replace g by

g, «=-3ij, (kr, )P (k r ) =-ik r,(l-,k'r, '+ ~ ~ ~ )

everywhere. On using also the expansion $,(p,/2m)(1- j,'/4m'+ ~ ~ ~ ) and expressing 4 in terms of 4",
(6) reduces to a sum of terms involving operators explicitly of order n', taken between 4,"and 4&"
(which may therefore immediately be replaced by P,. and Pz), and a "dangerous" term proportional to
D =(i/2m')e'&&k-(4z" ~L~4,. "&, where L is the orbital angular momentum operator. However, with

~
I., S& denoting a simultaneous eigenstate of L' and S~, we have

I4; "&=a, (0, I&+a& I1, 1&+a, I 2, 1&+a, I 1, 0&

( q, "&=b, (0, 0&+b, )1, 1&,

with a;/a, =O(o.') and b, /b, =O(n'), the additional terms being induced by the fine-structure operator
H&, '

~ lt follows that D -(k/m)b, a, =O(n'), which may be neglected; the remaining terms entering the

evaluation of N ' may be combined to give

(«) 2K«p« mk' x«
M = Pf — + CP, ,

with K, =(&f&~0', .k&&e ~y,.&. A similar reduction may be carried out for M' =M, "+Mb'2'+M, ". Here
no dangerous terms arise and one finds

M ~"= (-2iK,/6m') (y~ ~ r, V, ' +r, r» V» ' + (e'/r»') F, r (8)

the three terms in (8) representing, in order, the contribution of M,~'~, Mb~'~, and M,~'~, respectively;
we have written the result in a. form valid for arbitrary potentials V, =V,(r, ) and V» = V»(r») and the
prime indicates a derivative. For the case at hand, V, 'r, =-V, and V»'=-e'/r»' so that the contribu-
tions of Mb"' and M,~" cancel exactly, to this order; and adding (7) and (8) we get

2@K«p« Vg mk z«
3~2 f ~ 2 4

(9)

which involves only one-electron operators. '
For the purpose of numerical computation, it is convenient to rewrite the matrix element (9) in an-

other form, which is equivalent for exact wave functions p, , pf, and is expected to be closely equal
to (9) for the approximate wave functions we shall use. We use the commutator identity,

&y, ~
k'r, '

~ q, &
= &q, i [H„,, [H, r, ']]I q, &

= 2f&,
' 2 Vg 2 e'

m2 m mr "«'» ~
«2

to,eliminate the P, term and then use the fact that
~ y,. & is odd under particle exchange, while

~ p&& is
even. We can then rewrite (9) as

M =(2iX,/3m )I,

with

Ze' 1 1 e' mk'

1 2 12

(9)
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Using K=e(2k) '~aM, the decay rate 8 is then
given by

We have evaluated I using six-parameter varia-
tional helium wave functions computed by Huang. '
The result obtained is I= —(4a'm)(1. 87). Using
kc =2.99&&10"Hz, we then get A=1.2&&10 ' sec '
or a helium lifetime

~=8.4X10' sec.

We have also evaluated the decay rate in the lim.—

it of heliumlike ions with very high Z, where the
wave functions are taken as products of hydro-
genic wave functions, and find

4 - Z80. 'k2187
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X-Ray Parametric Conversion
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The observation of x-ray parametric conversion is reported. Results are in accord
with the calculated nonlinear x-ray susceptibility. The appropriate nonlinear mecha-
nisms are described in terms of classical free electrons.

An x-ray nonlinear optical effect has been ob-
served and the corresponding second-order sus-
ceptibility measured. Parametric conversion is
the absorption of a photon at frequency &~ with

the resultant emission of two photons of frequen-
cies ~, and ~„where co, +~, =~~. At visible
wave lengths, "this phenomena has been ob-
served and measured in a number of materials.
Motivated by Freund and Levine's proposal and

calculations, ' we have observed the analogous
phenomena in the x-ray regime.

As shown in Fig. 1, the filtered and collimated
output of a 2-kW x-ray tube emitting character-
istic molybdenum radiation at 17 keV intercepted
a beryllium crystal almost oriented for (1120)
Bragg scattering. The outgoing radiation was

analyzed for coincident photon pairs with energy
near 8.5 keV. The observed coincident counting

rates were peaked in directions determined by
energy- momentum conservation. The measured
cross section is in accord with calculations. '

Electrons may be regarded as free if S~~, S~„
S~,»'&~, where F-~ is a typical electron binding

energy. Relativistic effects are small if S(d~

«mc'. In the experiment described here, S~~
=17 keV, and &~-100 eV.

Optical nonlinear phenomena depend qualita-
tively on such material properties as inversion
asymmetry and resonances. In contrast, nonlin-

ear x-ray mechanisms involving only x-ray pho-
tons depend primarily on the properties of free
electrons. Gross material properties, such as
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