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It is shown that the Faddeev formalism must and can be modified when the short-range
two-body behavior is specified by a hard core or boundary-condition model. A new in-
tegral equation is formulated for this purpose which, in the special case of boundary-
condition model or hard core alone, reduces to an equation in a single vector variable,
This feature provides an apparently unique example of a nonseparable interaction for
which the three-body equations can be solved exactly.

There are many problems in physics in which

it is a useful abstraction to represent the ex-
tremely short-range interaction of a two-particle
system by introducing a hard core or its general-
ization, the boundary-condition model (BCM). A

test of such ideas and many interesting applica-
tions lie, potentially, in systems consisting of
three or more particles. In order to realize this
potential one must first learn how properly to in-
corporate such singular interactions into the ex-
isting three-particle formalism. In this Letter I
present one solution to this problem.

A recent paper' by the present author demon-
strated that it is possible to define unambigu-
ously an off-shell two-body t matrix appropriate
to singular core interactions of the above type.
In what follows I employ some special properties
of this t matrix to show that the usual Faddeev
equations' do not have a unique solution for a
potential model consisting of the BCM' and an
arbitrary Potential external to the core. It is
further demonstrated that this ambiguity can be
eliminated by an alternative interpretation of the
three-body formalism. For the special case of
BCM alone, it is shown that the resultant problem
reduces to the solution of an integral equation in
a, single vector variable. If, in addition, one
makes the assumption that only a few two-body
partial waves contribute (which is quite reason-
able for a model with finite range), the problem
may be further reduced to a set of coupled one-
dimensional equations, and hence is exactly sol-
uble. ' To the author's knowledge, this is the
only example of a nonseParable interaction for
which such a, reduction is possible.

I emphasize that the above statements hold re-
gardless of whether the BCM t matrix is diagonal
in l, i.e., whether or not tensor mixing is put in-
to the model; this permits a straightforward ap-
plication of the Feshbach-Lomon model' to the

three-nucleon problem. For the more realistic
case of BCM plus external potential, the corre-
sponding statement is that the increase in com-
putational difficulty involved in the addition of
the BCM to a given external potential is equiva-
lent to that produced by adding a separable poten-
tial.

We proceed by establishing some notation' for
our three-body formalism, assuming for simplic-
ity that our three particles are spinless (it should
be clear from what follows that this is nonessen-
tial). We denote the mass of particle ~ by m,
and the total three-body c.m. energy by 8'.
Three-particle states are described by the usual
Jacobi variables p~, q~, with the corresponding
reduced masses p, ~, where

P~ '=ma '+my ',

M„'=m„'+(ms+mr) '.

In the usual channel decomposition, the three-
body state vector is I@)

=Q„lpga,

where

Here t~ represents the two-body t matrix as an
operator in the three-body Hilbert space, lp) is
a plane-wave state, and G, = Go(&) is the free
Green function. Equation (2) is one expression
of the Faddeev equations.

It is convenient to introduce the states I o.'pq),
where

(~p'q'I Ppq) = & s&(p'-p) &(q'-&a,

E„fdpdql upq)(upql = l.



VOLUME 26, NUMBER 11 PHYSICAL REVIEW LETTERS 15 MARcH 1971

%e can then define the operators t, J, such that

&np'q'~ t~ Ppq) = b„g5(q' —q)t (p', p; W—q'/2M„),

&~p'~'Iiiepg&=-s(p. "' p'-"'i a i p" "-p) ( 0 cyclic),

=-~ p+ --p'+ — q' & q-p'+ q' ny cyclic .
my

Here t„(p', p; &) is the two-body off-shell t matrix for particles P and y, energy &; the diagonal ele-
ments of ~ vanish. With the identification

t (p, q ) =&p q lt )-=&~p q lv),

and letting I g) =M I y), we can rewrite Eq. (2) in the form

M = ].-Q t+6 tJM.

(4)

lt is important to keep in mind that the operators in Eq. (6) act on the states of Eq. (3); in particular

p'/2p. +q /2M„-W-ie'

Clearly, I and Gp commute.
The development up to this point has been completely general, with the object of obtaining the op-

erator equation for M, Eq. (6), as a representation of the Faddeev equations. We now observe a spe-
cial property of the BCM t matrix which is a simple consequence of the explicit form given in I,

t/G, t=tG, V = V.

As in I, V= t/'V corresponds to a square-well potential of unit strength and a range a for the matrix
element

(8)

np q~ 'V( Ppq) = 5 6(q'-q) V (p'-p).

Note that V is not the potential which gives rise to the BCM t matrix. Equation (8) is valid whether or
not an external potential is present.

The proof that Eq. (6) does not yield a unique solution when the BCM is present in the interaction
rests on the validity of Eq. (8), and the existence of an operator B such that

V(1-I)VB(1-I) = V(1-I). (io)

An explicit form for & is easily constructed by considering this equation in coordinate space, in which
~ is simply a product of ~ functions. Its momentum-space representation is given by

& p'q'I BI &pq) = ~ s(~(&p) &(&q)--'&(p,) V.(p.)--'~(p, ) V.(p,) +-'V. (p,) V.(p.)j,
where

&q = q-q', p = &p+ (& /~. ) &q,

p, =-ap+(p, /m, )aq,

and no& are cyclic.
Given J3, we define the operator

Q = 1 + VB(I-1),

which has the following properties:

QQ = Q, V(1-I)Q =(1-1)QV=0,

(1-VI)Q = 1V, QV = VQV.

(12)

It is easy to verify that I has an inverse, in fact

I '=(I+1)/2. The properties of Q then imply that

(1-G,tI)I 'G, Q V = G,(1-tG,) VQ V = 0, (14)

where we have used Eq. (8). Thus I 'G, QV= G,QV
is a nontrivial solution of the homogeneous equa-
tion related to Eq. (6). Consequently, a unique
solution M to Eq. (6) does not exist, i.e., the in-
verse operator (1-G,tI) ' does not exist for the
BCM plus any external potential.

A better understanding of this difficulty and a
key to its solution can be obtained by considering
the implications of Eq. (8) for the two- and three-
body wave functions. In the two-body case, the
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scattering state can be expressed as

t =t "'+(1-t G, )V,(i-G, t), (17)

where V, is the external potential, and t is the
half-on-shell t matrix for the pure BCM,

t '".(p', p;z') = t'c(K, p;sP).

Furthermore, t satisfies the unitarity relation

~t =-t'ZG, t

= -t Quot+,

where At and dt", are the respective right-hand
discontinuities of t and Go.

In the three-body case we have ~4& = (1—1)~g& in
our notation, and hence Eqs. (6) and (8) imply
that

v(e& = v(1-I)M tq & =0. (20)

In a fashion analogous to the above, Eq. (20)
merely states that the three-body wave function
vanishes when any pair of particles are closer
than their respective core radius. Recalling the
properties of our operator Q, we may extend the
analogy by writing M =@M'"'; Eq. (6) then sug-
gests that

M'" ' = 1-Got +GotIQM'" '.

Employing Eqs. (13) and (16), we note that

(1-VI)M = (1-V)M'" '

= 1-Got + (Got- V)IM,

(2i)

(22)

verifying that M is indeed a solution to Eq. (6).
Moreover, using the relation

(1-1)M= 1-GOT

between M and the three-body f matrix T, as

(23)

Thus, as a consequence of Eq. (8), V~(("& =0.
Physically, this simply reflects the fact that the
wave function vanishes when the two particles
are closer than their core radius. Moreover,
this property implies that we can write

1-Got =(1-V)(1-Got ),

where t is an operator such that (1-G,t)
~ p& gives

the correct form of
~

g"'& exterior to the core re-
gion. In fact, it is easy to show from the results
of I that t can be chosen to be

well a.s Eqs. (21) and (19), one can directly verify
that T satisfies three-body unitarity providing
that M'"' is a solution to Eq. (21).

The existence of M'"' may be demonstrated by
the fact that G, tIQ is a kernel of the Fredholm
type; this follows easily for the pure BCM since
f is then separable, while the addition of a rea-
sonable external potential can only improve its
square integrability. ' The separability of G, tIQ
for the pure BCM reduces Eq. (21) to an integral
equation in a single vector variable analogous to
that arising in the usual formalism from a sepa-
rable potential, and thus permits an exact solu-
tion. This feature is apparently unique for this
model since the full BCM t matrix is nonsepara-
ble.

In summary, we have demonstrated that the
usual Faddeev formalism must and can be re-
stated io the case of singular core interactions.
In doing so, we have shown that the problem then
reduces to the solution of a new equation, Eq.
(21), for the operator M'"'. The new formalism
is such that it guarantees three-particle unitarity
and the correct behavior of the interior wave
function, Eq. (20). As a bonus, the nonseparable
pure BCM interaction is reduced to an easily
soluble three-body problem.
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