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It is shown that the Faddeev formalism must and can be modified when the short-range
two-body behavior is specified by a hard core or boundary-condition model. A new in-
tegral equation is formulated for this purpose which, in the special case of boundary-
condition model or hard core alone, reduces to an equation in a single vector variable.
This feature provides an apparently unique example of a nonseparable interaction for
which the three-body equations can be solved exactly.

There are many problems in physics in which
it is a useful abstraction to represent the ex-
tremely short-range interaction of a two-particle
system by introducing a hard core or its general-
ization, the boundary-condition model (BCM). A
test of such ideas and many interesting applica-
tions lie, potentially, in systems consisting of
three or more particles. In order to realize this
potential one must first learn how properly to in-
corporate such singular interactions into the ex-
isting three-particle formalism. In this Letter I
present one solution to this problem.

A recent paper® by the present author demon-
strated that it is possible to define unambigu-
ously an off-shell two-body ¢ matrix appropriate
to singular core interactions of the above type.
In what follows I employ some special properties
of this { matrix to show that the usual Faddeev
equations? do not have a unique solution for a
potential model consisting of the BCM?® and an
arbitrary potential external to the core. It is
further demonstrated that this ambiguity can be
eliminated by an alternative interpretation of the
three-body formalism. For the special case of
BCM alone, it is shown that the resultant problem
reduces to the solution of an integral equation in
a single vector variable. If, in addition, one
makes the assumption that only a few two-body
partial waves contribute (which is quite reason-
able for a model with finite range), the problem
may be further reduced to a set of coupled one-
dimensional equations, and hence is exactly sol-
uble.* To the author’s knowledge, this is the
only example of a nonseparable interaction for
which such a reduction is possible.

I emphasize that the above statements hold re-
gardless of whether the BCM ¢ matrix is diagonal

in /, i.e., whether or not tensor mixing is put in-

to the model; this permits a straightforward ap-
plication of the Feshbach-Lomon model® to the

three-nucleon problem. For the more realistic
case of BCM plus external potential, the corre-
sponding statement is that the increase in com-
putational difficulty involved in the addition of

the BCM to a given external potential is equiva-
lent to that produced by adding a separable poten-
tial.

We proceed by establishing some notation® for
our three-body formalism, assuming for simplic-
ity that our three particles are spinless (it should
be clear from what follows that this is nonessen-
tial). We denote the mass of particle @ by mg,
and the total three-body c.m. energy by W.
Three-particle states are described by the usual
Jacobi variables Py, 4s, With the corresponding
reduced masses pq, My, where

-1 1

’

Mo Zmﬂal"*‘my-

My t=me t+(mg+m,) N (1)

In the usual channel decomposition, the three-
body state vector is 1¥)=2,1%,), where

[$o) = (1=Goto) | @) —Gotasé) [ge). (2)

Here {4 represents the two-body ¢{ matrix as an
operator in the three-body Hilbert space, |¢) is
a plane-wave state, and G,= G,(W) is the free
Green function. Equation (2) is one expression
of the Faddeev equations.

It is convenient to introduce the states |apq),
where

(B’ | BBq) = 8050(5"~P) (&' -,
Ve dpdd| apdaidl=1. (3)
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We can then define the operators {, I, such that

<a_§’a'l H BE(D = baﬂé(a’_a)toc(—ﬁ,y ﬁy W_qz/zMa),

<a5'a'lzlzsp7z>:-a(ﬁd‘—ﬂa'-j;,—ﬂa')c(a@w“Aa') (aby cyclio),
my o my

(> Mg > g~ > > Mo » .
==0 ZB S 2B 3 5 F-0 + £ §f
<p+m7p +Maq> <q P +m7q> (Bay cyclic). (4)

Here t(p’, D; S) is the two-body off-shell ¢ matrix for particles 8 and y, energy s; the diagonal ele-

ments of I vanish. With the identification

Zpa(ﬁoc, aa) = ﬁ&ﬁa‘ Yot = <aﬁaaal W,

(5)

and letting |9) =M |¢), we can rewrite Eq. (2) in the form

M =1-G,t + G tIM,

(6)

It is important to keep in mind that the operators in Eq. (6) act on the states of Eq. (3); in particular

00 80(p’'=P) 0(q'~ )
D%/ 20a +q°/2M o= W~i€’

(ap'q’| Go| BB =

Clearly, I and G, commute.

(7

The development up to this point has been completely general, with the object of obtaining the op-
erator equation for M, Eq. (6), as a representation of the Faddeev equations. We now observe a spe-
cial property of the BCM { matrix which is a simple consequence of the explicit form given in I,

VG, t=tG,V=V.

(8)

As in I, p=7V corresponds to a square~well potential of unit strength and a range a, for the matrix

element

(ap'd'| V1 Bpd) = 00s8(3'~8) Vold'-D).

(9)

Note that V is not the potential which gives rise to the BCM ¢ matrix. Equation (8) is valid whether or

not an external potential is present.

The proof that Eq. (6) does not yield a unique solution when the BCM is present in the interaction
rests on the validity of Eq. (8), and the existence of an operator B such that

V(1-DVB(1-1) = V(1-D).

(10)

An explicit form for B is easily constructed by considering this equation in coordinate space, in which
B is simply a product of 6 functions. Its momentum-space representation is given by

(ap’q’| Bl BB = 00, 616(AD) (AQ = 30(5) V o(B) - 26(5,) V (8,) +3 Ve (5) Vo(B)},

where
Ap=p-p’, AG=G-4’, P1=4P+(ta/m)AG,
52:'A5+(“a/mc)Aa, (11)

and a0€ are cyclic.
Given B, we define the operator

Q=1+VB(-1), (12)

which has the following properties:
QQ=Q, V(1-DQ=(1-DQV=0,
(1-7NQ=1V, QV=7VQV. (13)

It is easy to verify that I has an inverse, in fact
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! I"'=(I+1)/2. The properties of @ then imply that

(1=GotDI'G,QV = G,(1-£G)VQV =0, (14)

where we have used Eq. (8). Thus I71G,QV = G,@V
is a nontrivial solution of the homogeneous equa-
tion related to Eq. (6). Consequently, a unique
solution M to Eq. (6) does not exist, i.e., the in-
verse operator (1-G,tl) ! does not exist for the
BCM plus any external potential.

A better understanding of this difficulty and a
key to its solution can be obtained by considering
the implications of Eq. (8) for the two- and three-
body wave functions. In the two-body case, the



VOLUME 26, NUMBER 11

PHYSICAL REVIEW LETTERS

15 MARrcH 1971

scattering state can be expressed as
[9@) =(1=G,1) | ¢). (15)

Thus, as a consequence of Eq. (8), V[¢®)=0.
Physically, this simply reflects the fact that the
wave function vanishes when the two particles
are closer than their core radius. Moreover,
this property implies that we can write

1-Gyt =(1-V)(1-G,1), (16)
where 7 is an operator such that (1-G,7)|¢) gives
the correct form of |#®’) exterior to the core re-

gion. In fact, it is easy to show from the results
of I that 7 can be chosen to be

[=1%+(1-7%G,)V (1-G,t), (17)

where V, is the external potential, and 7°“is the
half-on-shell / matrix for the pure BCM,

(P, B;K%) =K, B; K°). (18)
Furthermore, { satisfies the unitarity relation
AT==1"AG,I~
=—1"AG, ", (19)

where A7 and AG, are the respective right-hand
discontinuities of 7 and G,.

In the three-body case we have |[¥)=(1-D|y in
our notation, and hence Egs. (6) and (8) imply
that

VIW=V(1-)M|¢)=0. (20)

In a fashion analogous to the above, Eq. (20)
merely states that the three-body wave function
vanishes when any pair of particles are closer
than their respective core radius. Recalling the
properties of our operator €, we may extend the
analogy by writing M =QM®*"; Eq. (6) then sug-
gests that

MOt =1=Gyl +G JIQ M*", (21)
Employing Eqgs. (13) and (16), we note that
(1=-VM =(1=V)Me"
=1=Gyt +(Got=V)IM, (22)
verifying that M is indeed a solution to Eq. (6).
Moreover, using the relation
(1-NM=1-G,T (23)

between M and the three-body ¢ matrix 7, as

well as Egs. (21) and (19), one can directly verify
that T satisfies three-body unitarity providing
that M*' is a solution to Eqg. (21).

The existence of M*' may be demonstrated by
the fact that G,7/Q is a kernel of the Fredholm
type; this follows easily for the pure BCM since
[ is then separable, while the addition of a rea-
sonable external potential can only improve its
square integrability.” The separability of GofIQ
for the pure BCM reduces Eq. (21) to an integral
equation in a single vector variable analogous to
that arising in the usual formalism from a sepa-
rable potential, and thus permits an exact solu-
tion. This feature is apparently unique for this
model since the full BCM { matrix is nonsepara-
ble.

In summary, we have demonstrated that the
usual Faddeev formalism must and can be re-
stated in the case of singular core interactions.
In doing so, we have shown that the problem then
reduces to the solution of a new equation, Eq.
(21), for the operator M®*'. The new formalism
is such that it guarantees three-particle unitarity
and the correct behavior of the interior wave
function, Eq. (20). As a bonus, the nonseparable
pure BCM interaction is reduced to an easily
soluble three-body problem.

*Work supported by the U. S. Atomic Energy Com-~
mission.
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