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It is predicted that, for type-II superconductors with s values near I/~2 at tempera-
tures below T, , the transition at 11,~ is first order when $0/I ~ 50 and the transition at

H, 2 is first order when $0/I ~ 50. It may not be possible to observe the latter transition
because of experimental difficulties but the former transition should be observable. We

also show that the vanishing of the normal-superconducting wall energy is irrelevant
for determining if a given superconductor is type I or type II.

It is well known' that the Ginzburg-I andau-
Abrikosov-Gor'kov (GLAG)' ' theory of type-II
superconductors predicts that the transitions at
IJ„and Ij„are of second order; the magnetiza-
tion curve is continuous and there is no latent
heat. The GLAG theory is, however, limited to
T= T, and in this article we show that supercon-
ductors with ~= I/v 2 can have a first-ordei
transition at P„or P„, depending on the ratio
of the mean free path l to the coherence length

In the GLAG theory, the critical value of ~

above which type-II behavior is obtained is ~,
= I/M2; there are at least four distinct reasons
for this and we now review them.

(a) The condition for the existence of bounded
solutions of the linearized Ginzburg-Landau (GL)
equation for the order parameter is that the ap-
plied field IJ, be less than the upper critical field
H„, where H„=M2KH, . Thus ~ must be greater
than I/v 2 for type-II behavior.

(b) The expression for the Gibbs free-energy
difference between the mixed and normal states
near H„ is"

-(H.-H.,)'
m( a) n ( a) 8&(2&2 1)P

where P„depends only on the lattice structure;
s must be greater than I/M2for the mixed state
to be stable.

(c) Calculations" of the lower critical field
show that P„ is less than H, only if v&1/v2. For
v= 1/v 2, H„=H, for all values of P, the number
of flux quanta per isolated vortex.

(d) The normal-superconducting wall energy
vanishes2 for s = I/M2 and is greater than or less
than zero according to whether ~ is less than or
greater than 1/v 2.

The GLAG theory is, however, limited to T = T,
and the question of the value of K, at lower tem-
peratures is of interest. ' %e calculate v, using
the simplest model of a type-II superconductor

and restrict our attention to the temperature re-
gion just below T,.

(a) The calculations of Tewordt" for P„give
t;he result

H, 2
= M2v, H„

where

(2)

K, = K[1+ (1-t)f, (1~, n)].

The function f2(v, n) is given by Neumann and
Tewordt. '

(c) H„/P, for p = 1 has been calculated by Neu-
mann and Tewordt' in the form

[1+(1-t)5,(~, n)],
c c

where 5,(a, n) has been calculated for a mesh of
(v, n) values. H„/H, for p = 2 has been calculated
by the author, "and the results have been ex-
pressed in the form of Eq. (8) with 5,(~, n) re-
placed by 5,(~, n).

(d) The normal-superconducting wall energy
(o Ns) has been calculated by the author"; the re-
sult is

4vo /NHs,
'Z =g, (~)+ (I-t)g, (~, n),

where g, and g, have been tabulated.
The above calculations can be used to deter-

mine the first order corrections (in 1-T/T, ) to
the Ginzburg-Landau result ~, = 1/~2. From the
five criteria ~, =1/W2, ~, =1/v 2, P„=P, for

~, = ~[I+ (I-t)f, (n)],

t = T/T„and n= 0. 882$, /I; Tewordt' has given an
analytic expression for f, (n) and has calculated
f, (n) for some values of n.

(b) Near H„, the Gibbs free-energy difference
between the mixed and normal states is'

-(H. -H„)'
m n 8+(2~ & 1)P
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Table I. dK /dt at T =T~ as a function of o.'for five different definitions
of K

~,=1//2 ~ 2
—-1/W2

H
C

10

50

100

0.2881

0.2506

0 .2131

0.1758

0 .1394

0.1118

0.0922

0.0861

0.0834

3.0831

0.0838

0 .7694

0.6456

0.5226

0 .4012

0,2827

0 .1920

0.1228

0.0976

0.0826

0.0779

0 .0740

-0 .0654

-0.0393

-0.0140

-0 .0424 0 .0191

-0 .0205, 0.0300

0.0403

0 .0500

0 .059 3

0.0670

0.0751

0.0797

0.0839

0 .0860

0.089 3

+0 .0007

0 .0410

0 .0568

0 .0712

0 .0782

0 .0840

0 .0866

0.0906

0 .0341

0 .0530

0.0697

0 .0776

0 .0840

0.0869

0 .0910

+0 .0104 i +0 .0212

p=1, FI„=H, for p=2, and vNq
—-0, we obtain

K ~
K ~ K 3 K ~ and K 5 respectively, as func"

tions of n. %e define

~„. =1/v 2-(1-t)[d~„/dt], .„
and give in Table I values of d ~„/dt at t = 1 as
functions of o.. By Eq. (8), however, the table
also gives the values of I//2 —v„. extrapolated
to T=O'K, and I have chosen to discuss the re-
sults in terms of the latter interpretation since
the effects are largest at low temperatures. The
extrapolation of e, to T=O is poor for clean su-
perconductor s since K, diverges logarithmically
as T- 0,"but this does not qualitatively affect
our results; we use only the fact that K, & Ky for
clean to moderately clean superconductors. Be-
cause of the extrapolation, however, the follow-

ing results are only qualitatively correct. Table
I has a number of interesting features which we
now discuss.

(i) The five different criteria give different re-
sults for K, .

(ii) For o. &50, K,a is greater than ~~; this

means that flux penetration in the form of a doub-

ly quantized isolated vortex is energetically
preferable to flux penetration in the form of a

singly quantized isolated vortex for these values

of A.

(iii) For o.'~ 40 we have the inequalities K„&K,
We discuss the case a =0 (~„=0.4190 and

~,4 = 0.7495) in detail, but similar results are ob-

tained for all o. & 40. For K&0.4190 there are no
bounded solutions of the linearized order param-
eter equation, and we can conclude that the ma-
terial is type I. For 0.4190 &K &0.7495, the
bounded solutions exist and are stable with re-
spect to the normal solutions; hence the mixed
state exists in such a substance for a range of
applied field values between P, and 8,2. For
this range of K values, however, IJ„&II, for both

p = 1 and p = 2. Since the area under the magne-
tization curve gives the free-energy difference
between the supereonducting and normal states,
the initial flux penetration must occur at a value
of IJ, which is less than IJ, if the flux penetration
is incomplete at fields great. er than IJ, ; we can
conclude that the initial flux penetration is not in
the form of an isolated vortex with either p = 1 or
p =2. There are many possibilities for the form
of the initial flux penetration but the most reason-
able form is that of a lattice of singly quantized
vortices with finite spacing; the magnetization
would then be discontinuous at II, = H„and the
transition would be of first order. It should be
possible to extend the GLAG theory of the inter-
acting vortices "'"to temperatures less than

T, to see if this conjecture is correct; work in
this direction is in progress. The contradiction
between the definitions of ~„ from ~, = I/M2 and

P„/H, was first noticed by Tewordt. '4 It is im-
portant to note that the range of K values given
above is only the range for which a contradiction
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occurs; the (conjectured) stability of the vortex
lattice with finite spacing with respect to the
state with an isolated vortex may extend to val-
ues of v significantly larger than 0.7495.

(iv) Fol A —50~ one has the ineguallties K~a ( K 4
& w„& w„; the first of these implies that the ini-
tial flux penetration is in the form of a singly
quantized rather than a doubly quantized isolated
vortex. The case G-~ is typical, and we dis-
cuss it in detail. We then have ~„=0.6161, ~„
=0.6233, and x,2=0.6331. For 0.6161 &K &0.6233,
H„ is less than H, for P =1, but bounded solu-
tions of the linearized order parameter equation
do not exist (and would not be stable if they did
exist) for H, &H, . We can use the converse of
the argument in (iii) above: The flux penetration
must be incomplete for a range of fields greater
than IJ, if the Aux exclusion is incomplete for a
range of fields less than B, . I suggest that there
is a first-order transition at H„. For 0.6233
& ~ &0.6331, IJ„is less than II, and the bounded
solutions exist but they are unstable. If one con-
siders the shape of the magnetization curve as ~
is decreased through x = 0.6331 by varying the ~
of the pure superconductor, one is lead by a con-
tinuity argument to the conclusion that the trans-
ition at H,2 is of first order. " Since it is diffi-
cult to make high-quality samples with short
mean fI'ee paths~ lt 1s unlikely that the first OI'

der transition at IJ,2 can be observed. Although
the range of x values given above is only the
I'ange for which a contradiction is obtained, the
first-order transition probably exists only over
a small range; hence the magnetization curve
would be very steep for superconductors of in-
terest and even if good samples could be made,
it would be difficult to recognize a first-order
tI'ansltlon.

(v) If we define K,» as the greater of ~„and
z„and w„~ as the greater of I(,'„and w„, then the
table shows that K„ is larger than the greater of
I(,',» and ~,~. %e can conclude that the condition
0&s =0 is irrelevant for determining the critical
value of K.

In the above discussion we have used the iso-
tropic, weak-coupling model (which also neglects
spin paramagnetism, spin-orbit coupling, the
existence of two bands in transition metals, and

anisotropic defect scattering); it is possible that
the inclusion of these "real-metal" effects in the
model wou1d result in qualitative as well as quan-
titative changes in our predictions. A detailed
consideration of these effects is quite difficult,
and I suggest that an experimental investigation
of the possibilities of first-order transitions in
type-II superconductors, particularly at P„,
would be more fruitful. A more detailed account
of this work will be published elsewhere.
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