First-Order Transitions at H_{c1} and H_{c2} in Type II Superconductors*

A. E. Jacobs

Department of Physics, University of Toronto, Toronto 181, Ontario, Canada (Received 8 February 1971)

It is predicted that, for type-II superconductors with κ values near $1/\sqrt{2}$ at temperatures below T_c , the transition at H_{c1} is first order when $\xi_0/l \lesssim 50$ and the transition at H_{c2} is first order when $\xi_0/l \gtrsim 50$. It may not be possible to observe the latter transition because of experimental difficulties but the former transition should be observable. We also show that the vanishing of the normal-superconducting wall energy is irrelevant for determining if a given superconductor is type I or type II.

It is well known¹ that the Ginzburg-Landau-Abrikosov-Gor'kov (GLAG)²⁻⁴ theory of type-II superconductors predicts that the transitions at H_{c1} and H_{c2} are of second order; the magnetization curve is continuous and there is no latent heat. The GLAG theory is, however, limited to $T = T_c$ and in this article we show that superconductors with $\kappa \approx 1/\sqrt{2}$ can have a first-order transition at H_{c1} or H_{c2} , depending on the ratio of the mean free path *l* to the coherence length ξ_0 .

In the GLAG theory, the critical value of κ above which type-II behavior is obtained is $\kappa_c = 1/\sqrt{2}$; there are at least four distinct reasons for this and we now review them.

(a) The condition for the existence of bounded solutions of the linearized Ginzburg-Landau (GL) equation for the order parameter is that the applied field H_a be less than the upper critical field H_{c2} , where $H_{c2} = \sqrt{2} \kappa H_c$. Thus κ must be greater than $1/\sqrt{2}$ for type-II behavior.

(b) The expression for the Gibbs free-energy difference between the mixed and normal states near H_{c2} is^{1,3}

$$G_{m}(H_{a}) - G_{n}(H_{a}) = \frac{-(H_{a} - H_{c2})^{2}}{8\pi (2\kappa^{2} - 1)\beta_{A}},$$
(1)

where β_A depends only on the lattice structure; κ must be greater than $1/\sqrt{2}$ for the mixed state to be stable.

(c) Calculations^{1,5} of the lower critical field show that H_{c1} is less than H_c only if $\kappa < 1/\sqrt{2}$. For $\kappa = 1/\sqrt{2}$, $H_{c1} = H_c$ for all values of p, the number of flux quanta per isolated vortex.

(d) The normal-superconducting wall energy vanishes² for $\kappa = 1/\sqrt{2}$ and is greater than or less than zero according to whether κ is less than or greater than $1/\sqrt{2}$.

The GLAG theory is, however, limited to $T = T_c$ and the question of the value of κ_c at lower temperatures is of interest.⁶ We calculate κ_c using the simplest model of a type-II superconductor and restrict our attention to the temperature region just below T_c .

(a) The calculations of Tewordt^{7,8} for H_{c2} give the result

$$H_{c2} = \sqrt{2} \kappa_1 H_c, \tag{2}$$

where

$$\kappa_1 = \kappa [1 + (1 - t)f_1(\alpha)], \tag{3}$$

 $t = T/T_c$, and $\alpha = 0.882\xi_0/l$; Tewordt⁷ has given an analytic expression for $f_1(\alpha)$ and has calculated $f_1(\alpha)$ for some values of α .

(b) Near H_{c2} , the Gibbs free-energy difference between the mixed and normal states is⁸

$$G_m - G_n = \frac{-(H_a - H_{c2})^2}{8\pi (2\kappa_2^2 - 1)\beta_A}, \qquad (4)$$

where

$$\kappa_2 = \kappa [1 + (1 - t)f_2(\kappa, \alpha)]. \tag{5}$$

The function $f_2(\kappa, \alpha)$ is given by Neumann and Tewordt.⁸

(c) H_{c1}/H_c for p = 1 has been calculated by Neumann and Tewordt⁹ in the form

$$\frac{H_{c1}}{H_c} = \frac{H_{c1}}{H_c} \bigg|_{GL} [1 + (1-t)\delta_1(\kappa, \alpha)],$$
(6)

where $\delta_1(\kappa, \alpha)$ has been calculated for a mesh of (κ, α) values. H_{c1}/H_c for p = 2 has been calculated by the author,¹⁰ and the results have been expressed in the form of Eq. (6) with $\delta_1(\kappa, \alpha)$ replaced by $\delta_2(\kappa, \alpha)$.

(d) The normal-superconducting wall energy $(\sigma_{\rm NS})$ has been calculated by the author¹⁰; the result is

$$4\pi\sigma_{\rm NS}/H_c^2\lambda = g_0(\kappa) + (1-t)g_1(\kappa,\alpha), \tag{7}$$

where g_0 and g_1 have been tabulated.

The above calculations can be used to determine the first order corrections (in $1-T/T_c$) to the Ginzburg-Landau result $\kappa_c = 1/\sqrt{2}$. From the five criteria $\kappa_1 = 1/\sqrt{2}$, $\kappa_2 = 1/\sqrt{2}$, $H_{c1} = H_c$ for

.0191
.0191
.0300
.0403
.0500
.0593
.0670
.0751
.0797
.0839
.0860
.0893

Table I. $d\kappa_c/dt$ at $T = T_c$ as a function of α for five different definitions of κ_c .

p = 1, $H_{c1} = H_c$ for p = 2, and $\sigma_{NS} = 0$, we obtain κ_{c1} , κ_{c2} , κ_{c3} , κ_{c4} , and κ_{c5} , respectively, as functions of α . We define

$$\kappa_{ci} = 1/\sqrt{2} - (1-t) \left[d\kappa_{ci} / dt \right]_{t=1}, \tag{8}$$

and give in Table I values of $d\kappa_{ci}/dt$ at t=1 as functions of α . By Eq. (8), however, the table also gives the values of $1/\sqrt{2} - \kappa_{ci}$ extrapolated to $T=0^{\circ}$ K, and I have chosen to discuss the results in terms of the latter interpretation since the effects are largest at low temperatures. The extrapolation of κ_2 to T=0 is poor for clean superconductors since κ_2 diverges logarithmically as T - 0,¹¹ but this does not qualitatively affect our results; we use only the fact that $\kappa_2 > \kappa_1$ for clean to moderately clean superconductors. Because of the extrapolation, however, the following results are only qualitatively correct. Table I has a number of interesting features which we now discuss.

(i) The five different criteria give different results for κ_c .

(ii) For $\alpha \leq 50$, κ_{c3} is greater than κ_{c4} ; this means that flux penetration in the form of a doubly quantized isolated vortex is energetically preferable to flux penetration in the form of a singly quantized isolated vortex for these values of α .

(iii) For $\alpha \leq 40$ we have the inequalities $\kappa_{c2} < \kappa_{c1} < \kappa_{c4}$. We discuss the case $\alpha = 0$ ($\kappa_{c1} = 0.4190$ and $\kappa_{c4} = 0.7495$) in detail, but similar results are ob-

tained for all $\alpha \lesssim 40$. For $\kappa < 0.4190$ there are no bounded solutions of the linearized order parameter equation, and we can conclude that the material is type I. For $0.4190 < \kappa < 0.7495$, the bounded solutions exist and are stable with respect to the normal solutions; hence the mixed state exists in such a substance for a range of applied field values between H_c and H_{c2} . For this range of κ values, however, $H_{c1} > H_c$ for both p = 1 and p = 2. Since the area under the magnetization curve gives the free-energy difference between the superconducting and normal states, the initial flux penetration must occur at a value of H_a which is less than H_c if the flux penetration is incomplete at fields greater than H_c ; we can conclude that the initial flux penetration is not in the form of an isolated vortex with either p = 1 or p=2. There are many possibilities for the form of the initial flux penetration but the most reasonable form is that of a lattice of singly quantized vortices with finite spacing; the magnetization would then be discontinuous at $H_a = H_{c1}$ and the transition would be of first order. It should be possible to extend the GLAG theory of the interacting vortices^{3,12,13} to temperatures less than T_c to see if this conjecture is correct; work in this direction is in progress. The contradiction between the definitions of κ_{c1} from $\kappa_1 = 1/\sqrt{2}$ and H_{c1}/H_c was first noticed by Tewordt.¹⁴ It is important to note that the range of κ values given above is only the range for which a contradiction

occurs; the (conjectured) stability of the vortex lattice with finite spacing with respect to the state with an isolated vortex may extend to values of κ significantly larger than 0.7495.

(iv) For $\alpha \gtrsim 50$, one has the inequalities $\kappa_{c3} < \kappa_{c4}$ $<\kappa_{c1}<\kappa_{c2}$; the first of these implies that the initial flux penetration is in the form of a singly quantized rather than a doubly quantized isolated vortex. The case $\alpha \rightarrow \infty$ is typical, and we discuss it in detail. We then have $\kappa_{c3} = 0.6161$, κ_{c1} = 0.6233, and κ_{c2} = 0.6331. For 0.6161 < κ < 0.6233, H_{c1} is less than H_c for p = 1, but bounded solutions of the linearized order parameter equation do not exist (and would not be stable if they did exist) for $H_a > H_c$. We can use the converse of the argument in (iii) above: The flux penetration must be incomplete for a range of fields greater than H_c if the flux exclusion is incomplete for a range of fields less than H_c . I suggest that there is a first-order transition at H_{c2} . For 0.6233 $<\kappa<0.6331$, H_{c1} is less than H_c and the bounded solutions exist but they are unstable. If one considers the shape of the magnetization curve as κ is decreased through $\kappa = 0.6331$ by varying the κ of the pure superconductor, one is lead by a continuity argument to the conclusion that the transition at H_{c2} is of first order.¹⁵ Since it is difficult to make high-quality samples with short mean free paths, it is unlikely that the first-order transition at H_{c2} can be observed. Although the range of κ values given above is only the range for which a contradiction is obtained, the first-order transition probably exists only over a small range; hence the magnetization curve would be very steep for superconductors of interest and even if good samples could be made. it would be difficult to recognize a first-order transition.

(v) If we define κ_{c12} as the greater of κ_{c1} and κ_{c2} and κ_{c34} as the greater of κ_{c3} and κ_{c4} , then the table shows that κ_{c5} is larger than the greater of κ_{c12} and κ_{c34} . We can conclude that the condition $\sigma_{\rm NS} = 0$ is irrelevant for determining the critical value of κ .

In the above discussion we have used the isotropic, weak-coupling model (which also neglects spin paramagnetism, spin-orbit coupling, the existence of two bands in transition metals, and anisotropic defect scattering); it is possible that the inclusion of these "real-metal" effects in the model would result in qualitative as well as quantitative changes in our predictions. A detailed consideration of these effects is quite difficult, and I suggest that an experimental investigation of the possibilities of first-order transitions in type-II superconductors, particularly at H_{c1} , would be more fruitful. A more detailed account of this work will be published elsewhere.

The author wishes to thank J. Bardeen for suggesting the calculation of κ_c at temperatures below T_c , and L. Tewordt for informing him of the contradiction between the definitions of κ_c from $\kappa_1 = 1/\sqrt{2}$ and $H_{c1} = H_c$.

¹Recent reviews of the subject of type-II superconductivity from the theoretical and experimental standpoints, respectively, have been given by A. L. Fetter and P. C. Hohenberg, in *Superconductivity*, edited by R. D. Parks (Marcel Dekker, New York, 1969), Chap. 14; B. Serin, *ibid*. Chap. 15.

²V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. <u>20</u>, 1064 (1950).

³A. A. Abrikosov, Zh. Eksp. Teor. Fiz. <u>32</u>, 1442 (1957) [Sov. Phys. JETP <u>5</u>, 1174 (1957)].

⁴L. P. Gor'kov, Zh. Eksp. Teor. Fiz. <u>34</u>, 735 (1958), and <u>36</u>, 1918 (1959) [Sov. Phys. JETP <u>7</u>, 505 (1958), and 9, 1364 (1959)].

⁵J. L. Harden and V. Arp, Cryogenics <u>3</u>, 105 (1963). ⁶The calculation of κ_c for $T < T_c$ was suggested to

the author by J. Bardeen (private communication).

⁷L. Tewordt, Z. Phys. <u>184</u>, 319 (1965).

⁸L. Neumann and L. Tewordt, Z. Phys. <u>191</u>, 73 (1966).

⁹L. Neumann and L. Tewordt, Z. Phys. 189, 55 (1966).

¹⁰A. E. Jacobs, to be published.

¹¹K. Maki and T. Tsuzuki, Phys. Rev. <u>139</u>, A868 (1965).

¹²E. Müller-Hartmann, Phys. Lett. <u>23</u>, 521 (1966).

¹³L. Kramer, Phys. Lett. <u>23</u>, 619 (1966).

¹⁴L. Tewordt, private communication.

¹⁵First order transitions at H_{c2} have been found by G. Sarma [J. Phys. Chem. Solids <u>24</u>, 1029 (1963)] for a uniform exchange field acting on the conduction-electron spins and by K. Maki [Physics (Long Is. City, N.Y.) <u>1</u>, 127 (1964) and Phys. Rev. <u>148</u>, 362 (1966)] for a superconductor with large Pauli-spin paramagnetism and moderate spin-orbit coupling. The discussion of Maki's work by Fetter and Hohenberg (Ref. 1) is more closely related to our argument for a firstorder transition at H_{c2} .

^{*}Research supported by the National Research Council of Canada.