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Nonlinear Landau damping, the nonlinear interaction between two waves in which the
beat disturbance is resonant with the particle thermal velocities, has been observed for
electron plasma waves. The results confirm the predictions of weak-turbulence theory.

Although plasma turbulence is known to be an

important and sometimes dominant process in
many experimental devices, there is only one
well-developed quantitative theory for such pro-
cesses: weak-turbulence theory. ' ' Being a per-
turbation theory treating the strength of the tur-
bulence as the expansion parameter, it is a di-
rect extension of linear theory and requires that
the energy in turbulence be much less than the
plasma thermal energy. However, the qualitative
features of the theory are often used to describe
turbulence even when this restriction is violated
because they are the only concepts we have devel-
oped. Considering the widespread use of weak-
turbulence theory, experimental verification of
its various predictions is worthwhile.

Weak-turbulence theory analyzes plasma turbu-
lence by developing equations for the interaction
of the waves that constitute the turbulent spec-
trum. The theory can be tested experimentally
by examining either the interaction of two waves
or narrow spectra and comparing the interaction
characteristics with the predictions. Two types
of interaction appear in the theory.

If the beat disturbance of the two waves, A~
=~,-~, and L& =k, -&„ lies on the dispersion
curve of a natural mode of the plasma, resonant
wave-wave interaction takes place, producing this
third wave. Resonant wave-wave interactions
have been observed and positively identified. ' '
Unfortunately, it has proved difficult to measure
the strength of the interaction for comparison
with the theory.

If the beat disturbance does not lie on the dis-
persion curve, as interaction is still possible if
its phase velocity v, = 4~/Ak resonates with the
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FIG. 1. (a) Experimental apparatus. (b) Dispersion
relation for electron plasma rvaves. Dots are experi-
mental points; curve is the best computer fit and cor-
responds to a density of 1.1 &10" cm and T, =14 eV.

particles. Since this is equivalent to the Landau
damping of a single wave that resonates with par-
ticles, it is called nonlinear Landau damping.
The effect is unique to weak-turbulence theory.
The effect plays a vital role in the theory, for it
is the primary mechanism for transferring wave
energy to the particles; it is the heating and
"collision" mechanism in weak-turbulence theo-
ry. (An analogous effect is possible if the beat
disturbance is subject to cyclotron damping i.n-
stead of Landau damping, i.e. , 4~ =0, . This ef-
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feet has recently been observed by Chang and
Porkolab. 7)

In this Letter, we report an observation of the
nonlinear Landau damping of electron plasma
waves through interaction with the electrons. The
apparatus is shown in Fig. 1(a). Hydrogen plas-
ma from a coaxial microwave source drifts free-
ly down a uniform magnetic field. The plasma is
terminated on a plate that is biased to reflect
electrons. The plasma is bounded by a metal
cylinder of 10-cm diam with slits down its 2.5-m
length through which antenna probes may be
moved. The cylinder is a waveguide beyond the

cutoff at the frequencies used and so prevents
direct electromagnetic coupling between anten-
nas. The magnetic field is of order 1 kG, which
is effectively infinite for the plasma densities
used. The background hydrogen pressure in the
apparatus is less than 10 ' Torr, giving an elec-
tron-neutral mean free path in excess of 40 m as
the shortest mean free path for electrons. The
plasma can be correctly described by the one-
dimensional Vlasov equation.

Under these conditions, the equation for the
cylindrically symmetric, electrostatic, wave po-
tential of the electron plasma wave becomes'

where 4 is the wave potential, k and + are the complex wave number and angular frequency of the
wave, tv~~(r) is the radially dependent plasma, frequency, U, is the mean thermal velocity of the plasma
electrons, and W is related to the plasma dispersion function by W(x) =-,Z (-x/v 2). This is an eigen-
value problem which may be solved for each ~ to obtain k and 4(r). Only the lowest eigenmode need
be considered; the higher ones are strongly Landau damped except at low frequencies.

The experimental dispersion curve for the waves is determined from measurements of wavelength
as a function of the frequency of the plasma wave. The temperature and density of the plasma are in-
ferred by computer using a program that solves Eq. (1) to obtain the best least-squares fit to the ex-
perimental points. The result for a typical plasma is shown in Fig. 1(b). (On the upper part of the dis-
persion curve, the wave group velocity is almost constant and equal to 1.6v, .)

The nonlinear Landau-damping interaction between two electron plasma waves for an infinite one-
dimensional plasma has been calculated by Aamodt and Drummond for the initial-value problem. For
the spatial interaction in finite geometry the damping length of wave 1 caused by the presence of wave
2 can be written

Q = (8/m) 2~ ~l ~1 Wl f ) W1 & ~& ~1W2/W1 Wl 2 ~2 ~1Wg/Wl SF'Re —2 Iooo (2)

where v, A, and AD have their usual meaning; e, is a group velocity; v is a phase velocity; I' is the
total power in the wave; A is the cross-sectional area of the plasma; and the W functions are evalu-
ated at arguments indicated by the subscripts: W, being W(v, /v, ) and W, , being W(v, ,/v, ), where

v, , is the phase velocity of a wave on the dispersion curve with k =k, -k„etc. This expression follows
directly from the result for the temporal case with two modifications. The first term in the denomina-
tor, v„, is the group velocity to convert temporal effects to spatial. The I«o term represents the ef-
fects of finite geometry. It is an overlap integral of the radial eigenfunctions and is nearly unity in
practice. The final term is the analog of ~E, ~, the energy density in wave 2.

Equation (2) embodies simplifications made possible by the smallness of kAD for all waves involved.
This permits extraction of the factor Re(i/W, ), which is roughly proportional to the derivative of the
distribution function evaluated at v, . The electrons traveling with the phase velocity of the beat dis-
turbance are the ones most affected by the interaction. A special characteristic of this interaction is
that the sign depends upon the sign of v, -&,. Second waves at frequencies below ~, cause the wave to
damp, whereas waves at higher frequencies cause the wave to grow.

The damping length for wave 1 caused by another wave 2 can be written directly in terms of observ-
able quantities with conventional units:

4.4&&M v, PgAPW] T x ( W] ~ A~ —A~W]/Wg W] ~ Ag-A]W~/Wy

where T is electron temperature in volts, and ~ is the central plasma density. All lengths are in
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centimeters; P~ is in watts.
Equation (3) has a rather complicated appear-

ance, but all the terms in the equation except I',
can be obtained from the experimental dispersion
relation. To determine the power in the wave,
we must know the absolute coupling constant of
the transmitting probe. No direct method is
available, but a reasonably accurate value may
be obtained from the principle of reciprocity
which states that the coupling of an B,ntenna to a
particular mode is independent of the direction
of power flow. The coupling of a probe to a plas-
ma wave is therefore the same whether the probe
is used as a transmitter or receiver. Using a
pair of probes spaced so that only the undamped
wave of interest couples them, the sum of the
coupling constants is obtained directly from the
total observed coupling between transmitter and
receiver. With three probes in the machine,
three transmitter-receiver pairs are possible.
This gives three equations involving the three un-
known single-probe coupling constants and deter-
mines the constants with an accuracy of 1 to 2

dB. This method was developed for a device
similar to the one used here by Malmberg and
Wharton", who have found the result in agree-
ment with other methods of inferring the coupling
coefficient in several experiments. "" With this

information and the dispersion curve, all the
terms in Eq. (3) can be evaluated to obtain the
theoretical prediction of the nonlinear damping
rate.

Nonlinear damping is measured directly by
transmitting a test wave of sufficiently high phase
velocity such that no linear Landau damping is
observed in the machine. The receiver is tuned
to this wave, and the output is fed to a synchro-
nous detector. With a second transmitting probe,
the second wave (at high power) is coupled into
the plasma. This wave is modulated at 1000 Hz,
which serves as the reference for the sychronous
detector. The increase in output from the detec-
tor as the receiver moves away from the trans-
mitter indicates a nonlinear interaction occuring
as the waves propagate, and the sign determines
whether it is growth or damping. Typical traces
for the development of the nonlinear interaction
are shown in Fig. 2. By measuring the change in
wave 1 caused by wave 2 as a function of position,
the effects of possible nonlinear interactions in
the probe sheaths are removed. Although the
second wave is injected at moderately high pow-
ers, the levels are well within the limits of weak-
turbulence theory. The ratio of wave energy to
thermal energy, ~E, ~'/BmnkT, is always less
than 10 '. Furthermore, the actual potential ap-
plied to the transmitting probe is kept below k T
to preclude the generation of electron "beams"
at the antenna. " To insure that there was no
coupling to ion waves, ~ v, -t, ~

was always at
least 20 MHz, well above the ion plasma and
cyclotron frequencies. For dispersion curves as
in Fig. 1, it is clearly easy to choose a pair of
waves for which v~ 18 neal ve q glvlng as strong
an interaction as possible for this effect.

Two tests of Eq. (3) have been made. First,
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FIG. 2. Development of nonlinear interactions: Rep-
resentative traces of modulation in the signal received
at v& when the second wave is modulated, taken as the
receiver is moved away from the transmitters. The
upper two traces correspond to the points at 5.8 and
4.0 m% on the upper line of Fig. 3; the lower two trac-
es are the 3- and 1.5-mW points on the lower line. In
no case does the interaction change the amplitude of
the test wave by more than 10 Vo. The vertical scale is
changed for each trace.
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FIG. 3. Dependence of damping coefficient on P2.
The circles are for v~=270 MHz, v2=230 MHz; the
squares are for v~ =250 MHz, v2=220 MHz.
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the dependence of the damping coefficient on P,
has been measured. The damping coefficient as
a function of P, for two different wave pairs is
shown in Fig. 3. This establishes that the effect
seen varies as ~E, ~', the expected dependence.

The most significant test is to measure the ma-
trix element for the coupling, defined by e =MP, .
The matrix element has been measured for sev-
eral pairs of waves. The plasma conditions are
typically those for which the dispersion rel.ation
of Fig. 1(b) is appropriate, although tempera-
tures and densities differing by 50% have been
used. The results are summarized in Fig. 4,
showing the experimental matrix element plotted
against the value calculated from Eq. (3). The
dashed lines are the 2-dB limits set by the cou-.
pling constant of the probes, which is the major
uncertainty. The solid points represent cases
where v, & v, and the interaction causes damping;
the open circles represent cases where v, v,
and the interaction produces growth. The sign of
the interaction does change with the sign of v, -~„
a special feature of nonlinear Landau damping.
For the solid squares, the wave at t, was re-

FIG. 4. Observations of the matrix element. The ex-
perimental value is obtained from the observed nonlin-
ear interaction and power; the theoretical value is
computed from Eq. (3) using results of the linear dis-
persion curve. Solid circles are wave damping, open
circles are wave growth, and solid squares are wave
damping when the second wave is replaced by a narrow-
band noise spectrum. Dashed lines are +2 dB, showing
limits of uncertainty in coupling measurements.

placed by a narrow noise spectrum centered at
v, . Weak-turbulence theory treats the interac-
tion among elements of a broad spectrum. Al-
though it should also apply to single waves of the
amplitudes used here, the demonstrated irrele-
vance of whether P, is present as either a single
wave or a spectrum confirms this and establishes
that the observed effect is not a peculiar interac-
tion of a test wave with a large-amplitude wave.

The observations verify all the characteristics
of nonlinear Landau damping (within the experi-
mental error): The sign of the interaction chang-
es with the sign of v, -v„ the effect varies linear-
ly with the power in the second wave, and the
parametric dependences and absolute magnitude
agree with the theory.
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