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=0.150 b, which agrees with the value quoted in Ref. 1,
as expected, However, if one includes also the local
contributions from 2p and Sd' orbitals of Fe the value

of 9 is further lowered.
~~P. C. Sood and D. A. Hutcheon, Nucl. Phys. A96, 159

(1967).
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The asymptotic decay of the two-poiiIt correlation function G~(R) at and near a phase-
separation point is discussed for d-dimensional, spin-2' Ising models at love temperature.
The general behavior, even on the phase boundary (P=O), is in agreement with extended
Ornstein-Zernike predictions. It is shown why the nearest-neighbor two-dimensional
model in zero field is an exception. The decay of G~(RI, RI) near a free surface at high
temperatures agrees with phenomenological predictions using a vanishing boundary con-
dition. At love temperature, however, the decay of correlation near a surface i.s expo-
nentiaHy slower than in the bulk.

Tile gl'BRt uti11ty of t116 01'llstelll-ZBI'lllke (0-Z) R11d Landau-type phenomenologlcal tlleol'les fol dis-
cussing fluctuations in condensed systems is well recognized. Although these approaches generally
break down in the immediate vicinity of a critical point, ' ' the familiar prediction that the correlation
function

G„,(R„R)= {A{R,)8(R, +R)&
—&i(R,)&&I}(R,+R)&

should decay as e '"/R'" I}~' as R- ~ (when R, is far from any surfaces) is believed to be of much
wider generality, at least when the operators A and 8 are both identified as the relevant order param-
eter 4. In an earlier note we examined this general 0-Z hypothesis at high temperatures (considering
specifically spin--, , d-dimensional Ising models) and demonstrated that as R-~,

G (R R)=D "'D "'(e ' /R'" "')[I+0(R ')j+L)„"'D "'(e "" /R')[I+0(R ')j+ ~ ~ ~,

inverse correlation range K = qK, ; and the amplitudes D ~ ~, etc. , ax'e dependent upon 7 and
upon the ordering field f (=H). The 0-Z prediction is thus confirmed, in general, although for certain
operators (containing, like the energy b, only products of even numbers of spins) the leading "single-
particle" amplitudes D„("vanish in zero field (H=-O), leaving the second-order or '*two-particle" term
as the dominant decay law.

Nevertheless doubt is cast on the general validity of the extended O™Zprediction by the exact re-
sults for the two-dimensional neax'est-neighbor spin- & Ising models in zero field below the critical
point T, (i.e., on the phase boundary). Here the spin-spin (G «), spin-energy {G~q), and energy-ener-
gy (G«) correlation functions aII decay as e " /R' (in place of the expected 8 "s/R'~'). ' The spin-
inversion symmetry is broken fox' all 7.

"
& T, and there is no obvious reason why all the amplitudes D~'~

should vanish [although the remaining two-particle term in (2) would then have the correct form j.
In the present note, me report on a study of d-dimensional ferromagnetic spin-2 Ising models Bt Qgg

temperatures which answers these doubts. We show (A) that when H g0 (i.e., "near" the phase bound-
ary), the leading decay is always of 0-Z or "single-particle" form with, however„(B) dominant cor-
rections of the same form but different range parameter II,-,. (II «, , & 2&) rather than of the "two-parti-
cle" form exhibited in (2); (C) the conclusions (A) and (B) remain valid on the phase boundary, II =0,
for all cases except (D) the d =2 nearest-neighbor Ising models where the exact results' are repro-
duced by a "two-particle" decay law; if second-neighbor intex actions are introduced, the 0-Z decay
la% ls restored.

As a further, more sensitive test of the general 0-Z hypothesis, we have also studied the decay of
coll'Blatloll IleQt08R'Yfcc8. 'A surface 01 edge of dlmBIlslonallty di( (=I 2 ' ' d) 18 defined by tile illcl-
dence of d~ =d-d

~~
"planar" (d-I)-dimensional boundary "surfaces. '" If x and y are the respective
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distances of the points R, and R2 =R,-R from the ath bounding surface (n =1, 2, , d-l}, we find

G„,(R„R)=D„"D,'F(x, " y„;H)e '""/H' (3)

with I"(A) —const as R-~; the superscript && denotes boundary properties. Then, (E) at high temPera-
tuxes, as considered in I,4 we obtain

~"(H, T) = ~(H, T), 0'(d, d~) = —,'{d-1)+d~, (4)

so that the surface correlation range is the same as the bulk range although the decay is more rapid
by factor A ~-L. In addition, one finds E =IT~f(x, y~; 8), and D„"=D~~'~, with

f(x, y; Il) =R(1-exp[-(x+a)(y+a)/~A] j (5)

for x/R, y/Il «1, where a is the lattice spacing, and4 e(H, T) may be related to the angular variation
of ~(H, T) [see also Eq. (9) below]. From (5) one can see how the bulk 0-Z behavior is restored as x.

and y become large. These results confirm in detail the predictions of the phenomenological theo-
ries if the usual partial differential equation for 4'(R) is solved (using, say, the method of images)
with the boundary condition 4'(R) -=0 for R on the surface which, microscopically, is to be taken one
lattice layer outside the layer of surface spins. On the other hand, (F) at loco temPexatures and fox
a3/ H we find

z" (H, T) =v d, (2J-/0BTa) & x(H, T),

+(d, d, ) =-,'(d~~-I) =-',(d-d, -l),
where J'is the spin-spin coupling energy, so that the decay near a surface is exPonentially slouer than
in the bulk; the exponent 4' is also smaller. However one finds that the amplitude factor F in (3}var-
ies as e " ~""~ with ~*-J/k~T, which means that the surface contribution to G» rapidly damps out as
x and y increase, leaving only the more rapidly decaying terms like (3) with (4). These special sur-
face effects are not predicted by the usual phenomenological theories. Finally, (6) the nearest

neighb-

orr takeo dimension-al lattice in zero field is again a special case with v" =-~ but with 0 =1-, for d „=d
=1, rather than zero as predicted by (7).

The conclusions (A)-(G) above are based on detailed calculations using the transfer-matrix approach"
for ferromagnetic Ising systems in a field H (=k, TL) with nearest-neighbor interactions J' (=0 pTE')
between spins in adjacent (d-1)-dimensional "layers" of N spins, ' and with interactions J (=k F,TK) be-
tween spins within each layer. A low-T perturbation theory is developed by writing the transfer ma-
trix as'

K=@,[1+&vV +ze'V + ~ ~ ~ ] zo =e 'E,
where R, is diagonal in the representation of the eigenstates of a. layer. As in I we may write the
eigenvalues as 3,. =exp(-aE, .) and interpret the E,(H, T) as energ. y levels of a, many-body system. In
ze~oth order when H& 0 the vacuum state

~ 0) is given by all spins "up, "while "particles" correspond
merely to "overturned" spins. The higher states, in order of increasing excitation energy v, are the
following for periodic boundary conditions: (i) N localized single-particle states with &u,. ' a =4(d-1)K
+2L; (ii) (d-1)N bound-pair states of two adjacent particles with &u, ,

~"a =2~,"a-4K; (iii) ,N(N-2d+I)—
unbound-pair states of two non-neighboring particles with ~, , , '~ =2;;~ ~; and so on. In second order
the perturbations split the degeneracies (and mix in states of other particle number) leading, as in I,
to a lowest band of single-particle states ~q), of excitation energy

a),.(q) =~{H, T)+e(H, T)q'+O(q'),

where q is a wave vector of dimensionality d-1 and

~g =4(d —1)K+2L+w'[I-4(d-I) I'„,+2(2d-I) Y, ,]+O(w ),

e =a[Y„,-I'„,]e 'I +O(w'),

(10)
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The bound-pair states likewise yield a single-particle band ~, , (q) with gap v, ,a = ra+4K & va, while the
unbound-pair states yield a two-particle band &u„,(q, ci ) with ~, , , =2K& K . The asymptotic decay of

G»(R„R) for large R now follows, "as in I, from a knowledge of the matrix elements~ between the
states

~ 0) and
~ q) for which we find, in leading order,

M„"'(q) ~ u / ~
sink [2(d-1)Sr+I.] ~

~ D„'~. (13)

Since for general A (including spin and energy operators) these are nonvanishing for small q the pre-
vious arguments' lead directly to the 0-Z form [first term in (2)]. The second band of excited states
also has a single-particle character and so the next group of corrections are again of 0-Z form but
with v, , replacing v. These arguments establish conclusions (A) and (B).

In zero field the spectrum of R, is doubled up as there are two vacuum states ~0') and ~0 ) (all spins
"up, " and all "down"). However the two spectra mix only in order ~N, and thus the previous calcula-
tions stand if one lets H (and L) -0, so confirming (C) provided d & 2. In two dimensions one cannot
allow H-0 since in (10) and (11) one has Y~,(H) -H '- ~. This arises physically because the zeroth-
order zero-field single-particle and bound-pair states are degenerate when d =2. Furthermore these
states are also degenerate with bound triplets, bound quadruplets, ~ ~, corresponding to "domains"
of 3, 4, ~ ~ ~ adjacent overturned spins on a linear Ising chain. To classify this lowest band of N(N-1)
excited states one can label the positions x and y of the ends of the "domain": This yields a two-parti-
cle band except that "particles" must now be understood as interfaces or domain-wall points. This
band splits in first order, giving

(u,.(q, q") =~(T) + &(T)(q'+q") +O(q', q", q'q"),

with
~a =4K-4u +O(w'), e =ae ' +O(w').

Owing to the obvious "hard-core" condition r gy, the two-particle wave function has the form

&~, y Iq, q') =N '~~ exp[i(q+q')(~+1)/2]»n[2(q-q')(~-3)].

(14)

This introduces a factor sin —,(q —q') -(q —q') into all the matrix elements M„~'~(q, q') which, on evaluat-
ing the integrals' for G»(R) for large R, leads directly to the form e ' /R' as stated in (D) [compare
with I and the second term in (2)]. The value of v and the amplitudes D~ obtained agree with the exact
results to the appropriate order in ~. The introduction of, say, second-neighbor ferromagnetic inter-
actions is easily seen to stabilize the single overturned spins relative to the domain states. The form
(2), with leading 0-Z behavior, is thus regained with K;;g —KQ +(4el2/k gT).

By derivation, our results are valid for low T and general &. However, we expect the dominant
0-Z behavior to remain valid as R-~ at fixed T and Hc0 even in the critical region. In zero field,
however, the anomalous" decay found in the nearest-neighbor d =2 Ising model may well take over
more generally as T-T, . As we have demonstrated, this mode of decay is intimately connected with
the "diffusion" of the interface, or domain wall, between regions of coexisting conjugate phases. As
such it might be a dominant fluctuation and correlation mechanism near the critical point in two and
three dimensions. "

Finally, to establish the results (E)-(G) for decay near a surface, the same approach suffices. At
high T the main effect of a surface is to replace a factor e"" in the single-particle wave function by
a factor sinq(x+a); the spectrum does not change significantly. This sine factor enters the matrix
elements M„~'~(q) and thence yields the factor f(x, y; 8) of (5) with 4 given by (4). At low T, spins
overturned on the surface have a lower energy than the bulk single-particle states by 2J/0 ~Ta for each
exposed face. These states lead to a surface band of dimensionality d

~~
with gap (6), and, hence, cor-

responding 0-Z behavior with d replaced by d „as in (7). The lowest states for the d =2 nearest-neigh-
bor case when H =0 are again exceptional, being a set of N-1 single interfaces (i.e. , all spins over-
turned for r &x) with v"a =2K= zlca. The analysis is then similar to that for the single-particle band
at high T, with the corresponding result that 4 = p(d 1)+d~~:lz However the matrix elements of local
operators A between these states and ~0 ) decay exponentially with distance from the surface.
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We have considered explicitly the two-dimensional square Ising model with ferromagnetic second-neighbor inter-
actions in the layers perpendicular to the direction R.

We consider d-dimensional hypercubic lattices with surfaces perpendicular to the cubic axes. When d =3 the
case (d&=1, d

t~
=2) describes correlations near a single planar surface; (d ~=2, d

~~
=1) means that both R~ and R2

lie near the intersection of two plane surfaces, that is, near a one-dimensional edge of the simple cubic lattice.
Note that d~ = 0 always implies the bulk situation.

To our knowledge these phenomenological predictions have not previously been reported.
For further references see I.
A preliminary report of this approach and its initial results was made by M. E. Fisher, J. Phys. Soc. Jap. ,

Suppl. 26, 87 (1969).
~As in I we assume R lies in a direction close to the axis along which the lattice is built up. The perturbation

theory generates successive angular corrections.
~2We may also recall that the interfacial tension vanishes as T —T, , thus enhancing such fluctuations (see also

Ref. 10).
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It is shown that, contrary to popular belief, diffraction scattering in nuclear and parti-
cle physics is not always of Fraunhofer type. By establishing a simple physical connection
between scattering in a Coulomb field and Fresnel diffraction we show that diffractive col-
lisions of heavy charged particles are predominantly of Fresnel type. We derive quantita-
tive criteria for Fraunhofer and Fresnel scattering which lead to a new classification of
all scattering processes.

Diffraction effects in nuclear and particle scat-
tering have been known for a long time and ar e
believed to be well understood. At high enough

energy, elastic scattering can be regarded as
shadow scattering in the presence of a large num-
ber of nonelastic processes; thus diffraction is
a consequence of the unitarity of the scattering
matrix. It is commonly assumed that all diffrac-
tion scattering is of Fraunhofer type. The argu-
ment is simple': In all nuclear scattering situa-
tions the particle source and the point of obser-
vation are practically at "infinity" relative to
the dimensions of the scattering object. If the
energy is high enough such that the wavelength
is small compared to the radius of the interac-
tion region, it seems obvious that we have the
conditions for Fraunhofer diffraction.

However, several years ago it was noticed2
that mell-known features in the angular distri-
butions for scattering of complex nuclei closely
resemble the characteristics of Fresnel diffrac-
tion in optics. It was shown that these "Fresnel
effects" are associated with the Coulomb inter-
action. In a certain well-defined limit, which
corresponds to high energy and a strong Coulomb
field, the analytic expression in the strong-ab-
sorption model' for the ratio of the differential
scattering cross section o(()) to the Rutherford
cross section vR(8) reduces to the simple formu-
la

o(8)/oa(e) = —,
' (f —,'-C (u) j'+ f —,'-S(w) ]'),

where C(w) and S(w) are the Fresnel integrals


