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Rigorous bounds are established on the absorptive part of the scattering amplitude,
A(s, t), for t real and within the Lehman-Martin ellipse, This result is used to prove an
upper bound on [d 1nA( st) /dt]g-p and 'to show that A(s, t) cannot have a zero in the region
0 &t &-4t0/(lns) 2 for s-~ (gt 0= 2m „for em, wiV, KiV, and NIV scattering). No assumption
is made about the high-energy behavior of the total cross sections.

The Serpukhov data on particle and antiparticle total cross sections' o„,(s) has pointed to a possible
failure of the Pomeranchuk theorem. ' This has led to a reanalysis of the "proofs" and to the deriva-
tion of new Pomeranchuk-like theorems. ' In trying to understand this possible failure in terms of a
Regge picture, Finkelstein produced an interesting model involving Regge cuts. This model amplitude
turns out to have infinite number of oscillations in the physical region for the scattering. It has been
suggested that this feature may be general, provided the particle and antiparticle total cross sections
tend to different finite limits. '

The purpose of the present investigation is to derive restrictions on high-energy behavior of the
scattering amplitudes and, in particular, on the location of the zeros in the physical region, using on-
ly general considerations. We make use of only (i) unitarity, (ii) analyticity within the Lehman-Mar-
tin ellipse, and (iii) the Jin-Martin upper bound

A(s, to) ( S,

where A(s, t) is the absorptive part of the scattering amplitude and s and t are, respectively, the

squared c.m. energy and momentum transfer variables. ' The major axis of the Lehman-Martin el-
lipse is given by 2(l+t, /2k'), where k is the c.m. momentum. We have Kt, =2m, for nm, rN, nK, &N,
and NN scattering. We shall not make any assumptions about the high energy -behavior of the total
n"oss sections.

The basic theorem. —The absorptive part of the scattering amplitude, A(s, t), has the partial-wave
expansion (for t, &t)

A(s, t) = Q (2l+1)lma, P, (z), (2 1)

where t = -2k'(1-z) and Ima, & 0 from unitarity. All the results discussed in this paper are derived
from the following basic result:

Theorem 2.

max{2„~ (t, t,)~M&I. &NI & ' &min(J„„(t, t, )~M&L&Nj (M, N=0, 1, 2, ),
A s, t
A s, to

(2.2)
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where

[P (x)-P (x)]J„(t,t ) =P„(z)[P„(x)-(I-&)Pi(x)-&Pi,„(x)]+P„(z)[(I-&)PI,(x)+ &Pi, +i(x)-P&(x) j,

t, = -2k'(1-x),

and the non-negative integer L and the number e (1 & e & 0) are determined by

A(s, t ) =A(s, 0)[(1-e)P~(x)+ePi+i(x)].

(2.3)

(2.4)

Proof. : Consider the problem of finding the extremum of A(s, t) given by (2.1) subject to the con-
straints

OO

A(s t, ) =(s' '/k)Q(2l+I)lma, (s)P,(x),
l=o

A (s, 0) = (s '~'/k)Q (2l + 1)Ima, (s),
i=0

Ima, (s) &0

(2.5)

with A(s t ) and A(s 0) regarded as given quantities. The set C of the solutions of the constraint equa-
tions (2.5) form a convex set. An extreme point of this set C is conveniently labeled by specifying two
integers. The extreme point S» (M, N integral, M &N) of the set C is given by solving (2.5) with the
proviso that Ima, = 0 for l & M, N, i.e.,

kA(s, 0) P (x)-(I-~)P (x)-eP „(x)
(2N+ 1)/s P„(x)-P„(x)

kA(s, 0) (I-e)P (x)+eP „(x)-P„(x)
(2M+ 1)v's P„(x)-P„(x)

Ima, =0 for /M, N,

(2.6)

where

JI/I&L ~ N.

The range of M and N is fixed by positivity of Ima, . The value of A(s t)/A(s 0) at the point S„„ofthe
set C is given by J„„(t,t, ). Since the set C is convex the extrema of the linear form A(s, t) will be
attained at one of the extreme points. ' Hence the theorem fo1lows.

We also note here the inequality

L & (s/4t, )"'ln(s/o. ..) (2.7)

which follows on using the Jin-Martin bound (1.1) and the relation (2.4). Theorem 1 has interesting
consequences only for an upper bound on A(s, t) in the region t, &t &0 and for a lower bound on A(s, t)
for 0&t. We shall discuss only these and the consequences derivable from them.

An upper bound on A(s, t) in the region t, &t&0, i e , x &z.&.1.—Theorem Z(A).

J~„~~(t, t ) = (1-e)P~ (z) + eP~+, (z) & A (s, t)/A (s, 0) for t, & t - 0.

Proof: Define a function f ($) by the following rule:

f ($) = -[(I-~)P„(z)+~P„„(z)]
for

(3.1)

(3.2)

$ =(1-e)P„(x) P+„e„(x)and x &z&1; n=0, 1, 2, ~ ~ ~ .

The function f (g) is a. continuous function of $ for $ &1. We have

f '($) = — "" " = —(z-1)Q (2k 1)P~ (z)[(x-l)Q(2k+ 1)P„(x)] for P„+,(x) & g &P„(x).
P„„(z)-P„(z)

n+1 x —
n 0=0 A=p

(3.3)
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Therefore
n -1

(z-1)(2t + 1)E, (2r+ 1)[P„(z)P„(x)-P,.(x)P„(z)]
lim [f '(t" +X)-f'(g-A)] = n n-. for g =P (x)(x-1)P (2k + 1)P„(x)g(2k+ 1)P (x)

q=0

=0 for $ tP„(x).

Using P„(z)P„(x)&P„(x)P„(z)for x &z & 1 and n &r, we obtain

Iim [f '()+X)-f '(g-A. )] & 0 for g &1.
O+

(3.4)

We thus see that the function f (g) is a convex function of $. Therefore

(X -»f(v )+b-v, )f(X,)-(X,-W, )f(X) «r all J -7-v &1~

Choosing y, =P„(x), y= (1-e)Pz(x)+&Pl+, (x), y, =P„(x), we obtain

(3.5)

J~+, ~ (t, to) ~ Jz„(t, to) for I&L&¹
(~o)t «o)

(3.6)

Then Theorem 2(A) follows from Theorem 1 on using (3.6).
Using Theorem 2(A) and the result (2.7) we obtain Theorem Z(B):

A (s, 0)I,[(t/t, )'"ln(s/v „,)] 8~co, )O &g)O
A(s, t), (3.7)

where the function Eo($) is a modified Bessel function.
The upper bound given by Theorem 2 improves a result of Martin. ' It also has the important conse-

quence

(3.S)

where n(t) is the position of the 4-plane singularity giving the high-s behavior of A(s, t). This result
was first noticed by Martin. ' It has, more recently, also been rediscovered by Arafune and Sugawara
who also obtained Theorem 2(B) with extra assumptions of (i) constancy and (ii) inequality of the high-

energy particle and antiparticle total cross sections. ' These assumptions are not needed.
A logger bound on the "diffraction Peak width" —We now use Theorems 2(A) and 2(B) to derive a low-

er bound on the "diffraction peak width" zo, defined by

w ' = [d lnA(s, t)/d t], 0.

We have from Theorem 2(A) the result

{(I-t)[P (z)-1]+e[P „(z)-1])/t & Q(s, t)-A(s, 0))/tA(s, 0).
gO) g «Q

Taking the limit t-0', we obtain

(I.+2m)(L+1) - (4k')w '.
Combining the result (4.2) and (2.7) we obtain Tkeoxem 3:

(1/4t, )[In(s/o„)]'-

(4.1)

(4.2)

(4.3)

Theorem (3) removes the major arbitrariness in the upper bound on w ' given by Kinoshita, '0 i.e., con-

stant &&(Ins)', & so '.
A /ower bound on A(s, t) in the physical region, (,.e. , 0& t. —The function P, (z) is an infinitely oscil-

lating function of I in the physical region (1 & z & -1). It is therefore not possible to evaluate explicitly
the lower bound given by Theorem 1 for all physical values of ~. A number of useful properties of the

lower bound can, however, be established and we proceed to discuss them now.
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(i) Tkeorerri, 4(A). There is a region 0& t& t in which

A(s, t)/A (s, 0) & (1-&)Pz(z) + ePz „(z)—= Zi „ii(f, t,). (5.1)

Proof: We have the inequality (3.6) for t&0. Further, the two sides of the inequality are equal at
t =0. Since both sides of this inequality are polynomials in z it follows that

for M & i.~ 8 and 0 ~ t & t~ „, where t„N is the largest negative value of t for which the two sides are
equal for M, N such that M& L & N a,nd (M, N) c (L+1, L). Further, t„„&0 for all relevant M and N.
Setting

t. = max/t, , ~
M & I. - N; (M, N) ~ (I.+ I, L)f, (5.2)

the theorem follows with t c0.
(ii) Theorem 4(B) Th. e lower bound on A(s, t) for 0 & f given by Theorem 1 is negative definite for

L & l„where I, is the lowest positive integral value of I for which P,(z)- 0.
Proof: Choose a value of M & L such that P„(z) & 0 and let N = l, . This can always be done in view of

infinite oscillations in I of P, (z) for 1 &z & -1. The function J„„(t,f, ) is negative definite for this
choice of M and N. Hence the assertion.

A corollary of this result is that t is finite.
(iii) In order to prove the next result we need the following presumably new inequality:

g, (z) =-P(z)-[l--,'E(l+1)(l-.z)]-0 for 1 -z - -]..
Consider

(5.3)

Since 1 & P, (z) for 1 & z & -1, it follows that g, (z) is a nondecreasing function of l. Noting that g, (z) =0
the result (5.3) follows. Using the inequality (5.3) in the lower bound given by Theorem 1 we get for
1~x~ -1 the bound

A(s, t}-A(s, )1—0max%~ „(t,)lM&I-Ã)(- ), .
where

[I'„(x)-P,(x)]Sr„„(t,) -=N(N+I) [I'„(x)-(1-~)P,(x)-a „,(x)]

+M(M+1)[(l-E)P (x)-fP „(x)-P (x)].

We can, again using the method used in proving Theorem 2(A), show that

(L 1)+(L 2+a)&E„„(t,) for M&L&N.

We therefore have Theorem 4(C):

A(s, f) & A(s, 0) [-1(L,+2e)(L+1)(1-z)/2]

and

A(s, t) & A(s, 0) 1+ ln Ifor 1& z & -1.S
s ' '] 4t o

(5.4)

(5.5)

Osci, llations. —Combining Theorems 4(B) and 4(C) we get the result that the lower bound on A(s, t)
given by Theorem 1 is positive in a region

0&t&~

where

(-4&,) - ~[In(s/o„, )]' & -j,'f
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for s -~, where j, is the position of the first zero of J',($) =0, i.e., j, =2.405. ~ -. Thus the amplitude
A(s, &) cannot have oscillations in this region.
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As a result of a computational error, the
dashed line of Fig. 2(c) misrepresents the work
of Ref. 2. The accompanying figure is correct
and indicates that the zero-bias conductivity
ba,sed on the work of Ref. 1 is quantitatively simi-
lar to that of Ref. 2.
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FIG. 2. (c) (revised) (dI&/dV) ~~~ vs e evaluated at
zero bias. The solid curve is computed from Kq. (1).
The dashed curve is estimated using Kq. (1) of Ref. 10
and is based on the work of Ref. 2.


