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Exact Calculation of the Orthogonality Catastrophe in Metals
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We give exact calculation, using the linked-cluster theorem, of the overlap between
the ground-state wave functions of a system of N fermions in the absence and in the pxes-
ence of a localized potential. It is found that the overlap vanishes as N, where e g)
contains both a nonperiodic and a n-periodic term in the phase shift 5 (eF) due to the po-
tential. The pxesent result reduces to that of Anderson and of Noziexes and de Dominicis
for small phase shifts.

It has been shown by Anderson' that the ground states of a system of many fermions in the absence
and in the presence of a localized potential are orthogonal to each other. This "orthogonality catas-
trophe" is indirectly observable in the response of a Fermi gas to the sudden application of a potential,
as in the edge of the x-ray absorption and emission spectra in metals. ' The orthogonality causes the
quenching of the zero-excitation line, while the edge singularity is related to the corresponding high
density of low-energy pair excitation8. 3

VYe present in this Letter an exact and direct calculation of the overlap between ground states with
and without the potential. The motivations for an exact calculation are several: Fir st, to investigate
the domain of validity of former calculations. " It can be asked' whether the overlap should be a m-

periodic function of the phase shift as are all the stationary properties of metals and alloys which can
be described in terms of scattering of conduction electrons, ' except, curiously, the Friedel surg. rule,
A periodicity implies that the sudden application of a potential sufficient to extract or destroy an elec-
tronic state (resonant or bound), 5F =n, would be equivalent in its effect on the Fermi sea to no poten-
tial at all. This does not seem very likely~ and the present analysis will allow us to distinguish be-
tween purely transient and secondary screening effects. Moreover, the present calculation is carried
out in a way which is directly applicable to the x-ray problem.

Consider the problem of x-ray emission. A deep hole is suddenly filled by an electron of the Fermi
sea. The potential seen by the latter is therefore switched off at time t=0, as'

V' =lim V8(-t) exp7)tea„ta„. . (1)
q ~o 0 A''

At t=-~, the ground state of the system is that of a Fermi sea in absence of potential, (0&. The po-
tential is switched on adiabatically. At time t the system has evolved in the presence of the potential,
to a state written in the interaction representation as (8 =1)

le (t)& =s(t, — ) I0& = Tfexp[-tj „dt' V, '(t')]jlo&,

where S(t) is the evolution operator or 8 matrix. The state I4(t)& corresponds to the ground state of
the system for t &0.' At t=0, the potential (1) is suddenly switched off. While the state of the system
remains unchanged [I+(t)& is time independent for t &0], it no longer corresponds to the ground state
of the system, which is now i0&. The quantity of interest is the overlap between 14 (t)& and the ground
state of the system at some time t &0, which is equal to the overlap between ground states just before
(t=0 ) and after (t=0') the switchoff. This overlap may be written as

&0I». = &0I~(t, — ) Io&= &0I~(, — ) Io& (3)

which is the ground-state expectation value of the S matrix. " The zero-excitation line intensity is
given directly by the square of the modulus of the overlap

f&~(t&0)Io&l'= l&llo&l'.

Similarly, the x-ray absorption can be seen as a time-reversed emission problem. The overlap is
given in this case by

& il0&. = &0I&(-, t) 10&*= &01&(, — ) I0&*

for some t &0, with a potential V'(t) = V'(-t).
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To evaluate the overlap, one makes use of the linked-cluster theorem" and obtains (th«pper/lower
sign corresponding to the emission/absorption case)

ln(S) = (S),—1=-Q V"n 'fdt, 9(+t,) ddt„6(+t„)g(t,-t2) g(t„-t,) = f d& Vfdt 0(+t)cp(t, t ), (6)
n=l

where g=Qg, is the free Fermi-gas propagator. The factor n or the integral over the fictitious
coupling constant A is needed to avoid overcounting. The function y(t, t) is the t=t limit of the double-
time Green's function y(t, t') =Q».p», (t, t'), which obeys the differential equation

(ts, -e„)q„,(t, t')-~ Ve(+t)Q, q„,(t, t') = 6,„,6(t-t').

After performing a Fourier transform over the variable t, Eq. (7) becomes a singular integral equa-
tion

y((u, t') ~g'((u)XV(2iv) 'fd(u'((u' (u i-g) -'(p((u', t') =g'(( ~)e' ' (8)

with a simple Cauchy kernel. The quantities g =g and g'=g/(1 —&Vg) are the absorption and emission
Green's function of Nozieres and de Dominicis (ND). '

The solution of integral equations of the type (8) is obtained by reduction to a Hilbert boundary prob-
lem. " Qne derives the following exact expression for the Green's function:

cp(m, t') =g'e' '' +g'e' XV(2im') 'fd&u'(e'-&u-iq) 'e'"''g'e', (9)

where L= (2i7!) 'fd&u'(~'-&u-tg) 'ln(1-XVg) is a complex phase factor due to the transient nature of
the potential. ' The symmetry between the emission and the absorption problems is evident. The
Green's function (9) reduces to the result of ND in the asymptotic limit It-t' I-~.'4 Performing the
remaining integral in (6), one obtains

fdt 0(wt)y(t, t) = fdt 0(+t)g (t=0 )+XV(2m) 'fd(ufd(u'[((u'-&u)'+rP] '[g'e~](e)[g e ~]((u').

The singular first term of Eq. (10) is purely imaginary and does not contribute to the zero-excitation
line intensity. The second term is identical for the emission and absorption cases: They have the
same overlap, as expected from time-reversal symmetry [Eqs. (4) and (5)]. The overlap is evaluated
by contour integration, using the spectral representation of the Green's function, "to yield the exact
result

Rein(S) = f'd~ ~V'f "d~,f" de@2 ~z[B (~,)A (~,)+8 (~,)A'(~, )](~,-~,) (11)

The argument is singular at the Fermi level (infrared catastrophe). The stationary spectral densities
z-~lmg~ fl' =p 'lmg', occur alone in the integral of (11), the phase factors canceling out. This

means that in its effect, the transient character of the potential occurs at two times only. Assumin

e spectral densities to be smooth functions of the energy, they can be taken out of the integral. The
singular part of the latter is readily evaluated:

f d~ 'f "d(u "(~ ' —(u ") ' = -in(a/p, ) = —,
'

lnN, (12)

where 6 = CN "' is the difference between electronic energy levels in a box of volume pN (N is the
number of ions or the number of electrons in the Fermi sea). The quantity C=m"'6"'5 m 'p"' is of
order of the Fermi energy p, , and the bandwidth u is introduced as an upper cutoff in Eq. (12). Com-
bining Eqs. (S), (11), and (12), one recovers Anderson's orthogonality theorem, ' namely

(ls)
where

& =-f, d»V'2[&'(p)A (~)+&(u)A'(p)] (14)

Introducing the following notations for the Green's function of the free Fermi gas, G'(& ~) =I(u)—ten(u!),
tan&= I(u )/v F(co Fn), and recalling the well-known expression for the phase shift in the presence of a
stationary localized potential A V,"tan5= -7!nAV/(1-IXV), one obtains for Q. the relation

e =v 'fd& A. 'sin'6, =-!!'cos'9[6~tan8+1n~cos6, -tan6sin5„~] (15)
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which is plotted in Fig. 1. Equation (15) repre-
sents a new, exact relation for the overlap. The
principal feature of our result is that o(6F) splits
into a term linear in the phase shift at the Fermi
surface 6F, n, = (--,')v 'sin286„, and a v-period-
ic contribution, a2=-m 2cos 8[lnrcos(8+6)r
—inrcos8r]. Although our particular choice of
the potential (1) restricts the phase shift to the

FIG. 1. The overlap exponent n as a function of the
phase shift. n can be written as the sum of a linear
and a ~-periodic contribution. One recovers Ander-
son's result for small phase shifts.

!

interval [—v/2 —8, v/2-8], it can be noticed that
the minimum of orthogonali, ty corresponds to
phase shifts which are multiple of 7t, i.e., for
perfect screening of the deep hole. The nonperi- Tr Tr 7T SF
odic behavior arises from the overcounting inte- 2

gration only [cf. Eq. (15)]. For the Green's func-
tion, on the other hand, it appears in the phase
factors exp' in Eq. (8). These phase factors,
essential in the asymptotic l.imit lt —t' I- ~,' can-
cel in the opposite limit It-t'

l
= 0 which enters

the calculation of a. The asymptotic limit of ND is therefore inadequate to calculate overlap, except
for small phase shifts.

The orthogonality disappears identically for 8=w/2, i.e., for an insulator or a semiconductor (where
5F=v though n„=0). The zero-excitation line remains finite, as is well known in these solids.

For small phase shifts, one recovers the result of ND and Anderson, '" e = 6F'/2m', which is indeed
the first term of an expansion in powers of 6F, as was hinted by Friedel. '" In a perturbative approach
in powers of the potential V, the first contribution to the modulus of the overlap is of second order.
From Eq. (6), one obtains +=2', V', which is the result of Schotte and Schotte. " For an infinite po-
tential, i.e., 6&= (n+-,'-)w-8, the orthogonality is maximal (n = ~) and independent of the size of the
sample, as was to be expected. Our result can be seen as an interpolation between the small phase-
shift value of Anderson and ND, and the physical requirement of maximum orthogonality for

r Vr = ~.
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Anomalous features observed in the tunneling spectra of Schottky barrier junctions on
si:B are related to Hubbard's model of the metallic (Mott) transition.

We have observed an anomalous zero-bias re-
sistance peak in metal-semiconductor (Schottky
barrier) tunnel junctions which appears as the
semiconductor impurity concentration approach-
es the Mott critical value N, .' Evidence suggests
that this peak is the result of a gap, or sharp
minimum, at the Fermi energy, in the density of
final states in the semiconductor. Broadening of
these states, consistent with Hubbard's model, '
is observed with a superconducting counterelec-
trode as a concentration-dependent broadening of
the BCS density-of- states peaks. The resistance

peak is increa. sed by large magnetic fields. Simi-
larity between this behavior and anomalous posi-
tive magnetoresistance in the semiconductor sub-
strate supports our interpretation if, at N„ the
tunneling final states occur near the reserve re-
gion' in the electrode. In addition, we show that
the real-intermediate- state tunneling model of
Giaever and Zeller" is highly instructive as an
approximate interpr etation of the experimental
results.

In spite of continuing interest in the Mott tran-
sition, ' predictions based on the Hubbard Hamil-
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