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Careful measurements have been made of the power and frequency dependence of the
ac Josephson steps in a superconducting tunnel junction exposed to microwave radiation.
At values of 2c.'=2eV, i/hf &25, significant deviations from Bessel function behavior
[Js{2n)) begin to occur. These deviations are correctly predicted in the detailed micro-
scopic theory of Werthamer and are a consequence of the logarithmic singularity in the
ac Josephson current at fi ——4a/k, i.e., the Riedel peak.

It is well known that a Josephson tunnel junction exposed to microwave radiation will exhibit a series
of current steps in its I-t/' curve. These steps, known as the Josephson steps, occur at the discrete
voltages given by Nhf/2e and are described in the phenomenological theory by the equation

I„(V„)=I, (o)g ~J„(2~)~5(Vd +Nhf/2e),
h' =0

where IJ(0) is the zero-voltage Josephson current, J„is the Nth-order Bessel function, snd ~ =e V„/kf.
The predicted Bessel-function dependence of the step heights has been observed by several research-
ers."

The derivation of Eq. (1) assumes that the Josephson current Ii(fi) is constant with frequency. Rie-
del' and Werthamer' have shown that Ii(fi), for the case of two identical superconductors at T =O'K,
is actually given by

Ii(fi) =(2Ii(0)/w]K(hf)/4b), hfdf/4A & 1,
= (2Ii

(0)/v)(4&/hfi)K(4A/hfdf),

kfi/4A & 1 (2)

where K is a complete elliptic integral of the first kind. Thus, as shown in Fig. 1, the Josephson cur-
rent exhibits a peak at fi =4L/h. Since the Josephson frequency is given by fi =2eV/h, the peak occurs
at a bias voltage of 2b, /e. By including this frequency dependence of Ii(fi) in the microscopic theory,
Werthamer4 has shown that the ac Josephson step heights should be given by

I„(V„)= Q IQJ„(~)J, „(~)I,((n=,'N)2f )~5(Vd, +Nkf/2e). (3)
N=O g

In this Letter we show that the predictions of Eq.
(3) can be verified experimentally and that these
measurements may be used to obtain data on the
shape of the Riedel peak.

It is a general property of Bessel functions that
J„(n)=0 for all a &N. Thus the significant terms
in the summations of Eq. (3) are those for which
~n~ &n and ~N-n~ &n. Using this fact together
with the identity'

I(f)
I 8{0)

Z.J.(&)J (o) = J,(2o'), (4)

it follows that for V& &2b./e, the argument of Ii
in Eq. (3) is less than 4A/h in all of the signifi-
cant terms. Thus, from Fig. 1 we see that I&

=I, (0), and Eq. (1) and Eq. (3) are nearly identi-
cal. Experimentally this means that normal Bes-
sel function behavior should be observed for all
values of o. for which the highest observable
Josephson step occurs at a voltage Vd, &2~/e.
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FIG. 1. Normalized Josephson current as a function
of frequency from Eq. (2). The insert shows a series
of points calculated from the experimental data. The
peak height appears to be about 2.4 at 1,8'K.
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Previous observations of the power dependence
of the step heights have been in this region.

If the applied rf voltage is large (V„,&26/t. ),
some of the contributing terms in the n summa-
tion of Eq. (3) will contain values of I& & I& (0),
and significant deviations from Bessel-function
behavior will occur in every step. An approxi-
mate rule for the value of V,f at which the first
departure from Eq. (1) occurs is the following:
If the Mth step falls nearest the gap, then the
first deviation of the Nth step occurs when 2e V&/
hf=N+ i'.

From Fig. (1) it can be seen that these devia-
tions will be most pronounced when

(n pN)2-f =4&/h. (5)

This occurs when one of the Josephson steps
falls near the gap voltage. If an even numbered
step, falls near the gap, Eq. (5) can be satisfied
only for N even, and thus the even numbered
steps show the strongest deviations. A frequen-
cy shift sufficient to bring an adjacent odd-num-
bered step in line with the gap shifts the strong-
est deviations to the odd steps. The existence
of these unusually large and highly frequency-de-
pendent deviations is a direct consequence of the
sharp peak in I,(f, ). At reasonably high frequen-
cies (f & 15 GHz for tin), the largest such devia-
tions arise principally from just the one term
for which n satisfies Eq. (5). A measurement of
the step heights over a range of frequency and
rf voltage thus provides a good method for deter-
mining the value of II (fJ ) near f, = 4L/h. We
have performed an experiment to make these

measurements and to provide data for a quanti-
tative comparison with the theory.

A frequency range of 20-26 GHz was chosen
for the experiment. These frequencies are high
enough to make the effects of the Riedel peak
clearly evident, and yet are not so high as to
cause a spatial variation of V,f over the junction
area (=10 ' cm'). ' Such a spatial variation
would violate the conditions under which Eqs. (1)
and (3) are derived. Evaporated film junctions
of the point overlap configuration were used. '
These junctions had a tunneling resistance of 3-
30 0 and a very high sensitivity to the applied
rf field. The large number of data points re-
quired were obtained by taking a motion picture
of the I-V curve (displayed on an oscilloscope)
as the rf voltage was continuously varied. The
data were reduced by examining the film frame
by frame. dc bias was provided by a constant-
current source and the I-V curve was measured
with the conventional four-wire circuit.

A precision attenuator, whose scale was pro-
jected along the side of the movie film, was used
to measure the relative value of V,f and hence
the value of 2o. . The attenuator reading A (in dB)
was converted to a value of Vf using the relation

10 '~~' "~. The ~~~~t~~t C was chosen t.o
obtain an overall best fit to the theory using data
on the first twelve steps. In a similar fashion
all of the step heights were divided by a single
normalization constant 10, again chosen for a
best fit. I, was approximately equal to the dc
Josephson current with V,&

= 0.
In Fig, 2, we show a representative sample of
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FIG. 2. Josephson step magnitudes from Eq. (1) (dashed line) and Eq. (3) (solid line), and experimental data
points (open circles)
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our data on a 3.6-0 junction at 23.4 GHz. The
dashed lines are the value of ~J~(2n)~ for the N
=1, 4, and 10 steps. The solid lines are comput-
ed from Eqs. (2) and (3) using the values 2h =

1.163 meV and f =23.40 GHz. At this frequency,
the 24th Josephson step falls near the gap. Thus
we expect to see the largest deviations from the
~ds(2o. )~ curve in the even numbered steps. Our
data strongly support Eq. (3). The close agree-
ment between experiment and theory especially
at the unusually large maxima (for instance,
those at N=4, 2o. =42 and N=10, 2o. =40) xs

strong evidence for the existence of the Riedel
peak. Although we have shown the results for
only three of the steps, we find similar agree-
ment for all twelve steps measured. This experi-
ment has been performed with several junctions
over a range of frequencies with equally good re-
sult. s.

A somewhat more quantitative determination
of IJ (f ) near the peak may be made. To do this,
we choose a series of data points for a fixed X
and n and a small range of frequency for which
there is a particularly strong and frequency-de-
pendent deviation. For each datum point, we se-
lect the one term (n') in the n summation of Eq.
(3) which most nearly satisfies Eq. (5), i.e. , n'
=2&/hf +N/2. Using the datum point, and the

theoretical values for the remaining terms of
Eq. (3), we solve for &~((n'--,'N)2f ). A series of
points obtained in this way is plotted on the in-
sert of Fig. 1. The error bars indicate the
spread which results from selecting different
data points at the same frequency. A more com-
plete discussion of these results will be present-
ed elsewhere.
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A self-consistent treatment of the Kondo scattering of conduction electrons from mag-
netic impurities is presented in order to treat finite concentrations of such impurities
in superconductors. The present theory leads to a concentration dependence for the
transition temperature which differs markedly from the Abrikosov-Gor'kov result. The
theory appears to account nicely for various experimental results. We also find that
superconductivity, under certain circumstances, does not exist at all temperatures be-
low T~,

In this Letter, we present a theory of the Kondo

effect in superconductors with finite concentra-
tions of magnetic impurities. Recently, there
has been some progress in extending to supercon-
ductors' the Nagoaka approximation, ' as well as
the Suhl approach, ' treating the s-d model for
magnetic impurities in metals. However, these
theories confine themselves to a single impurity

alone, i.e., to the lowest order in impurity con-
centration, while the finite-concentration case
has not been seriously attacked in this context.

One knows, however, that nonlinear effects can
arise for even very low impurity concentrations,
so that this case is of considerable interest.
There is also an experimental challenge to the
existing theory, since a number of systems in-
vestigated demonstrate a variation of the transi-
tion temperature T, with impurity concentration
which deviates in a characteristic and often inex-
plicable fashion from the Abrikosov-Gor'kov
(AG) prediction. '

Our treatment of finite concentrations is based
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