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"Wave-Mechanical" Model for the Nonadiabatic Loss of Particles from Magnetic-Mirror Traps*
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A model is presented which describes the nonadiabatic loss of particles from magnetic
mirror traps through a Schrodinger-like equation where the role of @ is played by the
"first action invariant. " The process is thus found to be analogous to the "tunneling ef-
fect" in quantum mechanics. The predictions of the model for the lifetimes compare very
well with the experimental results.

Recent experiments' ' have determined the av-
erage lifetimes of adiabatically trapped charged
particles of a given energy and magnetic moment
in mirror traps. It is well known that the trap-
ping takes place because of the adiabatic invari-
ance of the magnetic moment of a particle in a
slowly varying magnetic field. The magnetic mo-
ment 2mC~2/8 is, apart from a constant, sim-
ply the action, p = zmC~'/&, associated with the
cyclotron motion perpendicular to the lines of
force. (Here C ~ is the velocity perpendicular to
the magnetic field, and 0 =eB/mc is the cyclo-
tron frequency. ) The escape of particles from
the mirror traps is then correctly regarded as
being due to departure from adiabaticity. A con-
sequence of this departure is the change in the
value of the action p as the particle traverses a
certain region of the magnetic field variation.
Expressions for such a change have been obtained
in the literature ' ' but such expressions have not
been helpful in the determination of average life-
times of particles in magnetic mirror traps.

A suggestion usually made'" for the mecha-
nism of nonadiabatic escape of particles from
magnetic traps is that they suffer a cumulative
change in their action invariant until they finally
fall into the loss cone and escape. The argument
essentially regards the process as a kind of ran-
dom walk in the LIL space and into the loss cone.

It must be remembered, however, that even
though the process may have the appearance of a
random walk, the changes are determined by ex-
act equations of motion, and are therefore far
from Markovian.

We wish to emphasize therefore that the non-
adiabatic escape is a consequence of the exact
equations of motion, and the dynamics contained
in these equations constitutes the only legitimate
mechanism of escape. To describe the nonadia-
batic loss of particles we discard the concept of
the adiabatic loss cone for this purpose. Instead,
we work in terms of the properties of the exact
trajectories. In particular, we introduce the
adiabatic action (the time integral of the adiabatic
Lagrangian) as a variable to describe the distri-
bution of particles. Even though the exact trajec-
tories are complicated, the variation in action
(which is a function of the entire history of the
exact orbit) from one trajectory to another and
hence the distribution in action have some simple
and important properties which we exploit in the
formulation of our theory.

Since we wish to describe the experimental sit-
uation as close1y as possible, we consider a num-
ber of particles, with a specified energy E and
action invariant )L(. , equally distributed over the
Larmor phase cp initially. (The last condition is
inevitably obtained since the injection time is
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usually much larger than the Larmor period. )
I et the exact trajectories of N particles be given
by x„,=x,i, (t), y, =y;(t), and p, , = p,.(t), i=1, 2,
~ ~ -, K Since the nonadiabatic loss takes place
along the field lines, we specify only the parallel
coordinates xi'; of the exact-trajectory end points
(the suffix "parallel" will hereafter be dropped).
The slight nonadiabaticity which we shall consid-
er guarantees that the distribution in p, at any
subsequent time will be centered around the ini-
tial value p. . We shall, for simplicity, assume
our trap to be axisymmetric, and particles to be
injected off the axis of symmetry.

We shall, in what follows, use the principle of
least action as a guiding principle for the adia-
batic motion. We make the observation that the
guiding-center equation of motion,

rndC i,
/'dt = -V „(P0),

can be obtained by minimizing the action S given
by

S= fdt(-.' mC„' qn)= fl.dt, (2)

l. = (~C„—PQ) being the Lagrangian. Note that
the exact trajectories x; =x;(t) are different from
and, in the slightly nonadiabatic case, in the
neighborhood of the adiabatic one. It then follows
that the value of the action S at a given time f; as
calculated for an exact trajectory will in general
be different from the adiabatic value of the action
S„at that space-time point (x, t), but will ap-
proach the latter as P -0. (The smallness of P
should be formally understood as coming from
O-~, rather than from the pitch angle 6-0,
since the latter alters the value of the potential

pO. ) The same would be true of the infinitesimal
changes in action S. Again 4S-AS„, as JU. -0.
Furthermore, we wish to emphasize that the dif-
ference in the action S from the adiabatic value
S~(x, t), and from one trajectory to another, will
be small regardless of their complicated details.
In other words, the distribution of particles in
the action S would be peaked around the adiabatic
value S~ at an adiabatically accessible point (x, t).
It may thus. be noted that the action appears as a
very significant label because for a trajectory to
end up outside the trap at the end of a time f, , it
must have its action different from the minimum
for that time. We shall, therefore, find it useful
to introduce the action S as a variable.

The problem of determining the probability of
nonadiabatic escape of particles then reduces to
the problem of determining, at each instant of
time, what fraction of the actual trajectories la-
beled by their actions find their end points out-
side the adiabatic trap. Instead of the action S,
however, we shall introduce a quantity 4 to be
called the action phase, differing from it only by
the constant factor p. (the value at injection), C
—= S/P = p+ f 2mC'dt/P. We shall next introduce a
function f(x, C „t), defined at every point (x, t) to
give the (smoothed out) density of trajectory end-
points at the time f, per unit interval hx at x, and
with their action phases in 44, at 4,. Clearly
then, the particle density at (x, t) is given by

G(x, t) = fde, f(x, C„t);

4& denotes a value of the action phase at time t.
We can write the following equation for f:

f(x, C „„t+ r) = fd(Ax) f(x-Ax, C „t)P(x, t + T, C„,~x —bx, C „t),

where P represents the probability that a particle at (x—bx, t) and with action-phase C, goes to the
point (x, t+~) with action C'„,. For infinitesimal changes, we simply have C„,=C, +L~/g.

In writing down an expression for the probability function I' we first of all note that in the adiabatic
limit p -0, it must simply be 5(hx (~/m)B—S„/Bx), so that on integration with respect to &x and C „
(4) yields the equation of continuity in this limit. A very useful, and natural, choice for P with this
property emerges if we write for f a positive definite expression,

f(x, C„t)= g*(x, C „t)4(x, C „t).

Since f as a function of C, is peaked around the adiabatic value C„(x,t), we can write in the adiabati-
cally accessible region

P =Q„g(x, n, t) exp/in[S, -S„(x,t)] /P j. (6)

Consider now the quantity P~ (x, C „,t + 7 )P (x—bx, C, , t ). Using Eq. (6) and the relation S,„=S, + L7',

418



VOLUME 26, NUMBER 8 PHYSICAL REVIEW LETTERS 22 I'EBRUAR& 1971

we then have

g*(x, 4 „„t+v)g (x—&x, 4, , t) =Q g*(x, n, t+ v) p(x —6x, n', t) exp(-i(n-n')[S„, -S„(x,t+ v)] /g)
n, n'

&& exp[-in' (L v -b,S~)/II],

where &S„=S„(xt +v) —S„(x—&x, t), and I.= 2m(bx/v)' —pO. An integration with respect to 4 „,which
will eventually be performed results in n =n' in the expression (7). The surviving exponential, on the
other hand, amounts to the 5 function tv', hx (v-/m)BS„/sx} in the limit p-0, when an integral involving
it is evaluated using the steepest descent method, provided an appropriate normalization factor A(n) is
introduced. [This is given by Eq. (9).] We thus see that with suitable normalization the real part of
the expression in (t) would serve as a natural choice for P. Note, however, that for v, bx-0 this ex-
pression reduces to

~ P(x, @„t)[', which to lowest order can be taken to be if(x —&x, 4', , t)i'. Thus for
(7) to be an appropriate expression for P, it must be divided by the latter quantity. Using the expres-
sion for P so obtained, in Eq. (4) we get

) g (x, 4 „„t + v) i' = Re fd(hx) g*(x, 4 „„t + v )~(n) 4(x-hx, n, t) exp (i n[ S„,- Lv -S„(x,t)] /Iu ), (8)

where Re stands for the real part of the expression to its right. As indicated earlier, it canbe easily
shown that on integrating Eq. (8) over 4 „,we get the adiabatic equation of continuity in the limit P-0,
provided

[A(n)] ' = fd(ax) exp[ in&m(b—x)'/TP] = [2m@v/( inm)]'i—2. (9)

Eq. (8), in the form expressed, is thus an appropriate equation for the adiabatically accessible region.
For an arbitrary space point we carry out a Fourier analysis of P with respect to 4, according to

4(x, 4„t) =Q„4 (x, n, t) exp(inS, /Iu) (10)

rather than according to Eq. (6). Noting that the left-hand side of Eq. (8) is real, we ean drop the pre-
fix Re. This immediately gives

4(x, 4 „„t+T) = fd(ax)Q„A(n)+(x ~x, n, t) exp[in(S„, —L v)/P].

Fourier analysis of (11) with respect to 4„„gives
4'(x, n, t+ v) = fd(hx)A(n) exp{—in[ ~f(ax)'/T-tLQv']/P)4'(x —ax, n, t). (12)

If we now expand both sides about the point (x, t) and use Eq. (9) for A(n), we find the differential equa-
tiori for 4(x, n, t),

—i— = ——,—+ (p Q) 4 (x, n, t).. p, 84 p, '1 84
Pl Bt Pl 2yyl ax (13)

From the definition (3) of the density (or probability density, depending on the manner of normaliza-
tion) and from Eq. (10) we obtain the connection between the density and the solutions 4'(x, n, t) of Eq.
(13), namely,

G (x, t) = fd4, f (x, 4, , t ) =Q 4*(x,n, t)4 (x, n, t ).

ning

(14)

The term n =0 is to be excluded because from Eq. (12) the only possible solution for n=0 is 4(x, n=0, t)
=0.

On comparing Eqs. (6) and (10) we note that 4'(x, n, t) —P exp(-inS„/g), where S„is essentially the
Hamilton s principal function for the adiabatic motion. It follows that we should seek solutions for 4
of the form 4'- exp(inEt/p), where F. is the energy of the particle. We see that Fq. (13), with the con-
nection (14), and the form of the solution for 4 form a close analog of the Schrodinger theory in quan-
tum mechanics. Here the role of 8 is played by the first action invariant P (the value at injection).
Note also that p, occuring in the place of the potential is precisely the potential which describes the
adiabatic motion. The nonadiabatic escape of particles from the adiabatic traps, which can be calcu-
lated from these equations, then appears to be in the nature of the "tunneling effect" in quantum me-
chanics. It may be pointed out that our derivation is in fact analogous to the Feynman path-integral

4I9



Vox.UMK 26, NUMssa 8 22 I'zsRUaRv 1/71

Table I. A comparison of the theoretically predicted value h~h~o, of the expo-
nent for a=1 [see text, Eg. (15)] with its experimental value h«, for different
experiments.

Authors (cm) &&heor &expt

Dubinina et al .
Ponomarenko et al .

Configuration I
Configuration II
Configuration III

0.07',„
0.055~
0 047&max

0 096~IT]ax
0 05~max
o 036&max

formulation of quantum mechanics. '
If we assume the potential ttQ to be of the form ttQ=P, Q „[cosh(nx)] ' in the region of the mirrors

along a certain field line, then the probability of transmission per unit time across the potential hill
is given by

P = Q—C(n) exp -(2m)'~' [(ttQ) '~'-vE] —= —QC(n)e "("&1- 27™— 1
yg Q'p T n

where T is the bounce period between the adia-
batic turning points and the C(rt) are appropriate
constants. The dominant contribution comes from
n= 1. However, the presence of other values of
n shows that there shouM exist various e-folding
times in the decay of the particles, which are
integral multiples of the lowest. We present
below a comparison of the predictions of the the-
ory (n= 1) with the experimental results. The
calculations made are approximate in the sense
that the field variation is described in all configu-
rations simply by the scale length e ', charac-
terizing the variation only in the mirror regions
through the form of the potential used. The quot-
ed experimental results have been read as accu-
rately as possible from the curves given by the
authors. We tabulate in Table I the values of the
exponent h(n) in expression (15) for n =1 only,
evaluated for the corresponding values of the pa-
rameters in the experiments. The experimental
values of the exponents are obtained from the
steepest sections of ln& vs & curves.

A glance at the table shows that the experimen-
tal values compare very mell with the predictions
of the theory even with the approximation made in
the calculations. We thus conclude that our mod-
el describes very well indeed the average non-
adiabatic behavior of particles in the magnetic
traps in the slightly nonadiabatic case. The ap-
proximation made is worst for the configuration

III where the field variation had a more compli-
cated form. The departure is also the largest for
this case.
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